Difference between revisions of "Team:Freiburg/Protocols/Gibson Assembly"
(Created page with "{{Freiburg/CSS}} {{Freiburg/Menubar}} {{Freiburg/LabjournalCSS}} {{Freiburg/wiki_content_start}} <html> <!-- Labjournal content goes in here --> <div class="content_box"> <h1...") |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 4: | Line 4: | ||
{{Freiburg/wiki_content_start}} | {{Freiburg/wiki_content_start}} | ||
<html> | <html> | ||
− | <!-- | + | <style> |
+ | /*========= BEGIN: style for navigation bar ==========*/ | ||
+ | #notebook { | ||
+ | background: url(https://static.igem.org/mediawiki/2015/c/cd/Freiburg_icon_notebook_active_yellow.png) no-repeat; | ||
+ | } | ||
+ | |||
+ | #notebook a { | ||
+ | color: #ecdc18; | ||
+ | } | ||
+ | |||
+ | #runningchip { | ||
+ | left: 85.5%; | ||
+ | |||
+ | |||
+ | /*========= END: style for navigation bar ==========*/ | ||
+ | </style> | ||
+ | |||
+ | |||
+ | <!--========= BEGIN: GoBack button ==========--> | ||
+ | <div class="button_back"> | ||
+ | <a style="color:#FFF" href="https://2015.igem.org/Team:Freiburg/Protocols"> << Back</a> | ||
+ | </div> | ||
+ | <!--========= END: GoBack button ==========--> | ||
+ | |||
<div class="content_box"> | <div class="content_box"> | ||
<h1 class="sectionedit1"><a name="gibson_assembly" id="gibson_assembly">Gibson Assembly</a></h1> | <h1 class="sectionedit1"><a name="gibson_assembly" id="gibson_assembly">Gibson Assembly</a></h1> | ||
<div class="level1"> | <div class="level1"> | ||
+ | <p> | ||
+ | Gibson Assembly is rather novel method for assembling DNA fragments with overlapping overhangs. The operating mode of this method is devided into three major parts: | ||
+ | |||
+ | <ol> | ||
+ | <li>An exonuclease removes bases from the 5' end of each DNA strand.</li> | ||
+ | <li>Complementary regions of different DNA strands can anneal and a polymerase fills up the gaps.</li> | ||
+ | <li>The fragments are ligated together.</li> | ||
+ | </ol> | ||
+ | <br> | ||
+ | To enable these three steps, DNA strands with compatible ends of about 32 bp are needed. Those can either be incorporated by primer overhangs or by gene synthesis.<br> | ||
+ | A 5 µl mix of the DNA parts that are supposed to be assembled is prepared. Its composition is calculated based on the length and concentration of every single fragment. The insert(s) should at least be contained in a 4 - 8 fold molar amount of the antibiotic resistance containing backbone.<br> | ||
+ | </p> | ||
<p> | <p> | ||
− | < | + | <h3>Assembly of DNA fragments with overlapping regions</h3> |
<em>(adapted from AG Weber protocol)</em> | <em>(adapted from AG Weber protocol)</em> | ||
</p> | </p> | ||
<p> | <p> | ||
− | + | Material: Gibson Master Mix Aliquots<br/> | |
− | + | ||
− | + | ||
+ | Time: 90 min<br/> | ||
</p> | </p> | ||
<hr /> | <hr /> | ||
Line 27: | Line 61: | ||
</p> | </p> | ||
<ol> | <ol> | ||
− | <li | + | <li>Prepare 5 µl of DNA-Mix (calculate voulumes using the equations below or use the <a href="/igem2015/lib/exe/fetch.php?media=files:protocols:gibson_dna_mix.xlsx" class="media mediafile mf_xlsx" title="files:protocols:gibson_dna_mix.xlsx">prepared worksheet</a>. |
</li> | </li> | ||
− | <li | + | <li>Add the DNA Mix to Gibson Master Mix. |
</li> | </li> | ||
− | <li | + | <li>Incubate for 5 min at RT. |
</li> | </li> | ||
− | <li | + | <li>Use 5 - 7 µl for transformation of competent <i>E.coli</i> cells. |
</li> | </li> | ||
</ol> | </ol> | ||
</div> | </div> | ||
− | + | <br> | |
− | < | + | <br> |
+ | <h3>Calculation of the DNA mix</h3> | ||
<div class="level5"> | <div class="level5"> | ||
<p> | <p> | ||
+ | <li>Backbone:<br> | ||
V (Bb) = 12 ng/kb * l (Bb) / c (Bb)<br/> | V (Bb) = 12 ng/kb * l (Bb) / c (Bb)<br/> | ||
+ | </li> | ||
+ | <li>Insert(s):<br> | ||
V (Ins) = 12 ng/kb * l (Ins) * <strong>X</strong> / c (Ins)<br/> | V (Ins) = 12 ng/kb * l (Ins) * <strong>X</strong> / c (Ins)<br/> | ||
+ | </li> | ||
<br/> | <br/> | ||
Line 51: | Line 90: | ||
<strong>X</strong> = Ratio Insert to Backbone<br/> | <strong>X</strong> = Ratio Insert to Backbone<br/> | ||
− | + | for example: <strong>X</strong> = 4, if Ins : Bb = 4 : 1 | |
</p> | </p> | ||
</div> | </div> | ||
− | |||
− | |||
− | |||
+ | <!-- EDIT1 SECTION "Gibson Assembly" [1-806] --> | ||
<p> | <p> | ||
− | |||
− | |||
<body> | <body> | ||
− | <h3>A) | + | |
− | + | <h3>A) Gibson Assembly Master Mix</h3> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<p><b>Work on ice!</b></p> | <p><b>Work on ice!</b></p> | ||
<table class="tabelle"> | <table class="tabelle"> | ||
− | <tr><th><center> | + | <tr><th><center>Volume</center></th><th><center>Ingredient</center></th></tr> |
<tr><td><center>690 µl</center></td><td><center>dH<sub>2</sub>O</center></td></tr> | <tr><td><center>690 µl</center></td><td><center>dH<sub>2</sub>O</center></td></tr> | ||
<tr><td><center>320 µl</center></td><td><center>ISO buffer</center></td></tr> | <tr><td><center>320 µl</center></td><td><center>ISO buffer</center></td></tr> | ||
Line 87: | Line 111: | ||
<p>* dilute 3.2 µl T5 Exonuclease (10 U/µl) in 46.8 µl 1x T5-buffer</p> | <p>* dilute 3.2 µl T5 Exonuclease (10 U/µl) in 46.8 µl 1x T5-buffer</p> | ||
<p>aliquot á 15 µl</p> | <p>aliquot á 15 µl</p> | ||
+ | |||
+ | |||
+ | <h3>B) ISO buffer</h3> | ||
+ | <table class="tabelle"> | ||
+ | <tr><th><center>Amount</center></th><th><center>Ingredient</center></th><th>Remarks</th></tr> | ||
+ | <tr><td><center>1.5 g</center></td><td><center>PEG-8000</center></td><td></td></tr> | ||
+ | <tr><td><center>3 ml</center></td><td><center>Tris-HCl (1 M, pH 7.5)</center></td><td>dissolve 12.1 g Tris in 100 ml dH<sub>2</sub>O, adjust pH to 7.5 with conc. HCl</td></tr> | ||
+ | <tr><td><center>300 µl</center></td><td><center>DTT (1 M)</center></td><td>dissolve 1.54 g DTT in 10 ml dH<sub>2</sub>O</td></tr> | ||
+ | <tr><td><center>150 µl</center></td><td><center>MgCl<sub>2</sub> (2 M)</center></td><td>dissolve 4.06 g MgCl<sub>2</sub> in 10 ml dH<sub>2</sub>O</td></tr> | ||
+ | <tr><td><center>300 µl</center></td><td><center>NADNa (100 mM)</center></td><td>dissolve 0.02 g NADNa in 300 µl dH<sub>2</sub>O</td></tr> | ||
+ | <tr><td><center>4 x 60 µl</center></td><td><center>dNTPs (100 mM, each)</center></td><td></td></tr> | ||
+ | <tr><td><center>up to 6 ml</center></td><td><center>dH<sub>2</sub>O</center></td><td></td></tr> | ||
+ | </table> | ||
+ | <p>aliquot á 350 µl</p> | ||
+ | |||
</body> | </body> | ||
Latest revision as of 07:07, 20 November 2015
Gibson Assembly
Gibson Assembly is rather novel method for assembling DNA fragments with overlapping overhangs. The operating mode of this method is devided into three major parts:
- An exonuclease removes bases from the 5' end of each DNA strand.
- Complementary regions of different DNA strands can anneal and a polymerase fills up the gaps.
- The fragments are ligated together.
To enable these three steps, DNA strands with compatible ends of about 32 bp are needed. Those can either be incorporated by primer overhangs or by gene synthesis.
A 5 µl mix of the DNA parts that are supposed to be assembled is prepared. Its composition is calculated based on the length and concentration of every single fragment. The insert(s) should at least be contained in a 4 - 8 fold molar amount of the antibiotic resistance containing backbone.
Assembly of DNA fragments with overlapping regions
(adapted from AG Weber protocol)
Material: Gibson Master Mix Aliquots
Time: 90 min
- Prepare 5 µl of DNA-Mix (calculate voulumes using the equations below or use the prepared worksheet.
- Add the DNA Mix to Gibson Master Mix.
- Incubate for 5 min at RT.
- Use 5 - 7 µl for transformation of competent E.coli cells.
Calculation of the DNA mix
V (Bb) = 12 ng/kb * l (Bb) / c (Bb)
V (Ins) = 12 ng/kb * l (Ins) * X / c (Ins)
X = Ratio Insert to Backbone
for example: X = 4, if Ins : Bb = 4 : 1
A) Gibson Assembly Master Mix
Work on ice!
* dilute 3.2 µl T5 Exonuclease (10 U/µl) in 46.8 µl 1x T5-buffer
aliquot á 15 µl
B) ISO buffer
Remarks | ||
---|---|---|
dissolve 12.1 g Tris in 100 ml dH2O, adjust pH to 7.5 with conc. HCl | ||
dissolve 1.54 g DTT in 10 ml dH2O | ||
dissolve 4.06 g MgCl2 in 10 ml dH2O | ||
dissolve 0.02 g NADNa in 300 µl dH2O | ||
aliquot á 350 µl