Difference between revisions of "Team:Freiburg/Results/Modeling"
Line 36: | Line 36: | ||
<h2> Introduction</h2> | <h2> Introduction</h2> | ||
+ | |||
<span class="kommentar_stefan"> Stilbruch hier. Das ist eine resultspage introduction nd results waren bisher immer getrennt. (Stefan) </span> | <span class="kommentar_stefan"> Stilbruch hier. Das ist eine resultspage introduction nd results waren bisher immer getrennt. (Stefan) </span> | ||
− | More and more information on biological networks, and a lot is already known yet.Understanding signaling pathways important for medical health issues, but also for building new networks from scratch using synthetic biology.<br> | + | |
− | However, the more components a network involves, the harder it gets to estimate how a | + | <p> |
+ | <strong>More and more information on biological networks, and a lot is already known yet. Understanding signaling pathways important for medical health issues, but also for building new networks from scratch using synthetic biology.?</strong> | ||
+ | </br> | ||
+ | However, the more components a network involves, the harder it gets to estimate how a complex network reacts to changes from both the inside and the outside. This is especially a problem, if entities change both in time and space. Experimentally studying all different components of a network for different possible conditions often is not only time-consumptive but also very expensive and therefore not viable.<br> | ||
Mathematical modeling of biological networks therefore is a powerful tool to support experimental research, predicting the behaviour of networks both concerning time and space. These predictions can then be validated experimentally. | Mathematical modeling of biological networks therefore is a powerful tool to support experimental research, predicting the behaviour of networks both concerning time and space. These predictions can then be validated experimentally. | ||
− | <br><br> | + | </br> |
− | + | </br> | |
− | + | Two crucial biological processes within the DiaCHIP are cell-free expression and the diffusion of proteins to the specific chemical surface. Cell-free expression limits the DiaCHIP regarding time, protein diffusion regarding space thereby determining the maximum protein spot density one can still resolve. Therefore, we decided to model both cell-free expression and protein diffusion to predict the behaviour of protein concentration in time and space. | |
− | + | ||
− | + | ||
− | < | + | </br> |
+ | </br> | ||
− | With our model we aim to simulate cell-free expression to predict the amount of protein synthesized during the course of time. We set up a system of ordinary differential equations (ODE System) based on the law of mass action, describing the kinetics of the single processes occurring during transcription and translation. Starting from a detailed description including XX different entities and XX different parameters, we defined additional assumptions to simplify our system to a total of ZZ entities and ZZ parameters. Kinetic constants and all other parameter values needed were researched in literature. If no values were found, appropriate values were suggested. As the final model can not be solved analytically, it was solved numerically using Mathematica [REFERENCE] | + | With a model like this, it is possible to find the minimum time needed to get a sufficiently high concentration of protein for antibody detection. This reduces the time needed for diagnosis using the DiaCHIP. Furthermore, not only protein, but also other molecules' concentrations can be simulated. Therefore, bottlenecks within the biochemical system as well as limiting substrates can be predicted. Specifically increasing the concentration of such limiting substrates as well as substances involved in bottleneck processes may increase not only the overall protein yield but also speed up synthesis to account for an even faster diagnosis.<br> |
+ | Moreover, a cell-free expression model has huge potential for other applications. | ||
+ | <p> | ||
+ | |||
+ | |||
+ | <div class="kommentar">Hier fehlen noch Beispiele.</div> | ||
+ | |||
+ | <h2>Overview</h2> | ||
+ | <p> | ||
+ | With our model we aim to simulate cell-free expression to predict the amount of protein synthesized during the course of time. We set up a system of ordinary differential equations (ODE System) based on the law of mass action, describing the kinetics of the single processes occurring during transcription and translation. Starting from a detailed description including <strong>XX</strong> different entities and XX different parameters, we defined additional assumptions to simplify our system to a total of ZZ entities and ZZ parameters. Kinetic constants and all other parameter values needed were researched in literature. If no values were found, appropriate values were suggested. As the final model can not be solved analytically, it was solved numerically using Mathematica. [REFERENCE] | ||
+ | </p> | ||
<h2> Detailed System</h2> | <h2> Detailed System</h2> | ||
Line 415: | Line 428: | ||
<h3>3.1 Introduction and Motivation</h3> | <h3>3.1 Introduction and Motivation</h3> | ||
− | In the final step of cellfree expression proteins produced are | + | <p> |
− | + | In the final step of cellfree expression proteins produced are diffusing inside the microfluidic chamber. For the ideal case we observed: | |
− | <br> | + | </br> |
− | On the PDMS slide | + | On the PDMS slide spots of bound DNA produce proteins with steadily decreasing production |
− | rate. The product is distributed homogeneously on the spot and starts | + | rate. The product is distributed homogeneously on the spot and starts diffusing freely in the cell-free |
− | mix | + | mix. This is assuming that there are no interactions with other proteins of the cell-free mix. The coated iRIf glass is an ideal sink; any proteins reaching the slide are bound and therefore do not contribute to diffusion anymore. |
− | the slide are bound and therefore do not contribute to diffusion anymore. | + | |
+ | </br> | ||
+ | </br> | ||
− | |||
What knowledge did we want to gain by modeling? | What knowledge did we want to gain by modeling? | ||
− | <br> | + | </br> |
- Time optimization: When is the most efficient time to stop the expression? | - Time optimization: When is the most efficient time to stop the expression? | ||
− | <br> | + | </br> |
- Product optimization: How much of the totally produced proteins does bind to the surface? | - Product optimization: How much of the totally produced proteins does bind to the surface? | ||
− | <br> | + | </br> |
- Spot distance optimization: How is the bound protein distributed on the glass slide? | - Spot distance optimization: How is the bound protein distributed on the glass slide? | ||
− | <br><br> | + | </br> |
+ | </br> | ||
In order to achiev this we constructed the following system. | In order to achiev this we constructed the following system. | ||
− | <br><br> | + | </br> |
+ | </br> | ||
+ | </p> | ||
+ | <h3>3.2 Model System</h3> | ||
+ | <p> | ||
+ | Effective modeling depends on a wisely chosen assumptions. | ||
− | |||
− | |||
Assume the following setup: | Assume the following setup: | ||
− | <br> | + | </br> |
(PIC) | (PIC) | ||
− | <br> | + | </br> |
+ | <p> | ||
Illustrated above is a crosssection of the system around one spot (A1). Due to assumption A2 the number of geometrical degrees of freedom can be reduced to 2. | Illustrated above is a crosssection of the system around one spot (A1). Due to assumption A2 the number of geometrical degrees of freedom can be reduced to 2. | ||
− | <br><br> | + | </br> |
+ | </br> | ||
(PIC: parameters) | (PIC: parameters) | ||
− | <br><br> | + | </br> |
+ | </br> | ||
The physical process is described by the diffusion equation: | The physical process is described by the diffusion equation: | ||
− | <br><br> | + | </br> |
+ | </br> | ||
(Formel: Diffgleichung) | (Formel: Diffgleichung) | ||
− | <br><br> | + | </br> |
− | + | </br> | |
+ | <p> | ||
It is an inhomogeneous parabolic partial differential equation (PDE). The diffusion constant κ depends on the media and materials involved in the system, the inhomogenity describes sources and sinks inside the system. The initial and boundary conditions are the following: | It is an inhomogeneous parabolic partial differential equation (PDE). The diffusion constant κ depends on the media and materials involved in the system, the inhomogenity describes sources and sinks inside the system. The initial and boundary conditions are the following: | ||
− | <br><br> | + | </br> |
+ | </br> | ||
(Formel: ICs and BCs) | (Formel: ICs and BCs) | ||
− | <br><br> | + | </br> |
− | + | </br> | |
+ | <p> | ||
The problem can be solved numerically by application of a "finite differences method". The complete space M is split up into squares. Each square inhibits a concentration value. In an iterative method the diffusion between neighbouring squares is calculated in small time steps. If the step size is chosen small enough and the grid fine enough the diffusion can be simulated. The algorithm is the following: | The problem can be solved numerically by application of a "finite differences method". The complete space M is split up into squares. Each square inhibits a concentration value. In an iterative method the diffusion between neighbouring squares is calculated in small time steps. If the step size is chosen small enough and the grid fine enough the diffusion can be simulated. The algorithm is the following: | ||
− | <br><br> | + | </br> |
+ | </br> | ||
(PIC: Algorithmus) | (PIC: Algorithmus) | ||
− | <br><br> | + | </br> |
− | + | </br> | |
+ | <p> | ||
In a simulation using python (v3.4.2, together with numpy and scipy) depending on time step size, square width, diffusion constant and spot width we could determine binding behaviour on the slide as function of time: | In a simulation using python (v3.4.2, together with numpy and scipy) depending on time step size, square width, diffusion constant and spot width we could determine binding behaviour on the slide as function of time: | ||
− | <br><br> | + | </br> |
+ | </br> | ||
(Eingangsparameter, Graphik oder GIF...) | (Eingangsparameter, Graphik oder GIF...) | ||
− | <br><br> | + | </br> |
+ | </br> | ||
+ | </p> | ||
<h3>3.3 Assumptions</h3> | <h3>3.3 Assumptions</h3> | ||
+ | <p> | ||
A1: The spots are equally distributed and distance to the borders of the microfluidic chamber is at least one | A1: The spots are equally distributed and distance to the borders of the microfluidic chamber is at least one | ||
spot-to-spot distance. | spot-to-spot distance. | ||
− | <br><br> | + | </br> |
+ | </br> | ||
A2: The spots are perfect circles and the binding site at the iRIf glass is homohegeneous -> Around one spot | A2: The spots are perfect circles and the binding site at the iRIf glass is homohegeneous -> Around one spot | ||
cylindrical symmetry is given. | cylindrical symmetry is given. | ||
− | <br><br> | + | </br> |
+ | </br> | ||
A3: The area of produced proteins is as thick as the one of bound ones -> χ = ε | A3: The area of produced proteins is as thick as the one of bound ones -> χ = ε | ||
− | <br><br> | + | </br> |
+ | </br> | ||
A4: ... | A4: ... | ||
− | <br><br> | + | </br> |
+ | </br> | ||
</div> | </div> | ||
</html> | </html> | ||
{{Freiburg/wiki_content_end}} | {{Freiburg/wiki_content_end}} |
Revision as of 21:40, 16 September 2015
Modeling
Note
Introduction
Stilbruch hier. Das ist eine resultspage introduction nd results waren bisher immer getrennt. (Stefan)
More and more information on biological networks, and a lot is already known yet. Understanding signaling pathways important for medical health issues, but also for building new networks from scratch using synthetic biology.?
However, the more components a network involves, the harder it gets to estimate how a complex network reacts to changes from both the inside and the outside. This is especially a problem, if entities change both in time and space. Experimentally studying all different components of a network for different possible conditions often is not only time-consumptive but also very expensive and therefore not viable.
Mathematical modeling of biological networks therefore is a powerful tool to support experimental research, predicting the behaviour of networks both concerning time and space. These predictions can then be validated experimentally.
Two crucial biological processes within the DiaCHIP are cell-free expression and the diffusion of proteins to the specific chemical surface. Cell-free expression limits the DiaCHIP regarding time, protein diffusion regarding space thereby determining the maximum protein spot density one can still resolve. Therefore, we decided to model both cell-free expression and protein diffusion to predict the behaviour of protein concentration in time and space.
With a model like this, it is possible to find the minimum time needed to get a sufficiently high concentration of protein for antibody detection. This reduces the time needed for diagnosis using the DiaCHIP. Furthermore, not only protein, but also other molecules' concentrations can be simulated. Therefore, bottlenecks within the biochemical system as well as limiting substrates can be predicted. Specifically increasing the concentration of such limiting substrates as well as substances involved in bottleneck processes may increase not only the overall protein yield but also speed up synthesis to account for an even faster diagnosis.
Moreover, a cell-free expression model has huge potential for other applications.
Overview
With our model we aim to simulate cell-free expression to predict the amount of protein synthesized during the course of time. We set up a system of ordinary differential equations (ODE System) based on the law of mass action, describing the kinetics of the single processes occurring during transcription and translation. Starting from a detailed description including XX different entities and XX different parameters, we defined additional assumptions to simplify our system to a total of ZZ entities and ZZ parameters. Kinetic constants and all other parameter values needed were researched in literature. If no values were found, appropriate values were suggested. As the final model can not be solved analytically, it was solved numerically using Mathematica. [REFERENCE]
Detailed System
Transcription
# ODEs: 30 (Simplified: 14) (Shared: cmRNA)# Parameter: (Simplified: 9) (Shared: lDNA)
ODE System
\[ tc0(1): \;\;\; \frac{dc^{RNAP}_{free}[t]}{dt}\: =\: c^{RNAP}_{bound}[t] \cdot k^{RNAP}_{gain} - c^{RNAP}_{free}[t] \cdot k^{RNAP}_{loss} \] \[ \hphantom{tc0(1): \;\;\; \frac{dc^{RNAP}_{free}[t]}{dt}\: =\: } + c^{RNAP}_{sigma}[t] \cdot k^{sigma}_{off} - c^{RNAP}_{free}[t] \cdot c^{sigma}[t] \cdot k^{sigma}_{on} \] \[ \hphantom{tc0(1): \;\;\; \frac{dc^{RNAP}_{free}[t]}{dt}\: =\: } + c^{RNAP}_{elongter}[-1][t] \cdot k^{RNAP}_{diss} \]
\[ tc0(2): \;\;\; \frac{dc^{sigma}[t]}{dt}\: =\: c^{sigma}_{bound}[t] \cdot k^{sigma}_{gain} - c^{sigma}[t] \cdot k^{sigma}_{loss} + c^{RNAPsigma}_{bound}[t] \cdot k^{sigma}_{off} \] \[ \hphantom{tc0(2): \;\;\; \frac{dc^{sigma}[t]}{dt}\: =\: } + c^{RNAP}_{sigma}[t] \cdot k^{sigma}_{off} - c^{RNAP}_{free}[t] \cdot c^{sigma}[t] \cdot k^{sigma}_{on} \] \[ \hphantom{tc0(2): \;\;\; \frac{dc^{sigma}[t]}{dt}\: =\: } + c^{RNAP}_{ini}[-1][t] \cdot k^{tc}_{prel} \]
\[ tc0(3.1): \;\;\; \frac{dc^{RNAP}_{sigmaint}[t]}{dt}\: =\: c^{RNAP}_{free}[t] \cdot c^{sigma}[t] \cdot k^{sigma}_{on} - c^{RNAP}_{sigmaint}[t] \cdot k^{sigma}_{off} \] \[ \hphantom{tc0(3.1): \;\;\; \frac{dc^{RNAP}_{sigmaint}[t]}{dt}\: =\: } + c^{RNAP}_{sigma}[t] \cdot k^{RNAPsigma}_{isore} - c^{RNAP}_{sigmaint}[t] \cdot k^{RNAPsigma}_{iso} \] \[ tc0(3.2): \;\;\; \frac{dc^{RNAP}_{sigma}[t]}{dt}\: =\: c^{RNAPsigma}_{bound}[t] \cdot k^{RNAP}_{gain} \cdot c^{RNAP}_{sigma}[t] \cdot k^{RNAP}_{loss} \] \[ \hphantom{tc0(3.2): \;\;\; \frac{dc^{RNAP}_{sigma}[t]}{dt}\: =\: } + \sum \limits_{i=0}^n c^{RNAP}_{on}[i][t] \cdot k^{RNAP}_{off} - c^{RNAP}_{sigma}[t] \cdot p^{DNA} \cdot l^{DNA} \cdot k^{RNAP}_{on} \] \[ \hphantom {tc0(3.2): \;\;\; \frac{dc^{RNAP}_{sigma}[t]}{dt}\: =\: } + c^{RNAP}_{sigmaint}[t] \cdot k^{sigma}_{iso} - c^{RNAP}_{sigma}[t] \cdot k^{RNAPsigma}_{isore} \]
\[ tc0(4): \;\;\; \frac{dc^{RNAP}_{on}[i][t]}{dt}\: =\: c^{RNAP}_{sigma}[t] \cdot p^{DNA} \cdot k^{RNAP}_{on} \] \[ \hphantom{tc0(4): \;\;\; \frac{dc^{RNAP}_{on}[i][t]}{dt}\: =\: } + c^{RNAP}_{on}[i\:-\:v^{RNAP}_{move} \cdot dt][t] \cdot (1 - k^{RNAP}_{off}) - c^{RNAP}_{on}[i][t] \; , \] \[ \hphantom{tc0(4): \;\;\; \frac{dc^{RNAP}_{on}[i][t]}{dt}\: =\: } (i = 1, ..., l^{DNA}_{pre}) \]
\[ tc0(5): \;\;\; \frac{dc^{RNAP}_{prom}[t]}{dt}\: =\: \sum \limits_{i\:=\:n - v^{RNAP}_{move} \cdot dt}^n c^{RNAP}_{on}[i][t] \cdot (1 - k^{RNAP}_{off}) \] \[ \hphantom{tc0(5): \;\;\; \frac{dc^{RNAP}_{prom}[t]}{dt}\: =\: } + c^{RNAP}_{open}[t] \cdot k^{tc}_{closed} - c^{RNAP}_{prom}[t] \cdot k^{tc}_{open} \]
\[ tc0(6): \;\;\; \frac{dc^{RNAP}_{open}[t]}{dt}\: =\: c^{RNAP}_{prom}[t] \cdot k^{tc}_{open} - c^{RNAP}_{open}[t] \cdot k^{tc}_{closed} \] \[ \hphantom{tc0(6): \;\;\; \frac{dc^{RNAP}_{open}[t]}{dt}\: =\: } + c^{RNAP}_{ini}[-1][t] \cdot k^{tc}_{iniab} - c^{RNAP}_{open}[t] \cdot c^{ATP}[t] \cdot c^{X_1 TP}[t] \cdot k^{tc}_{ini1} \]
\[ tc0(7): \;\;\; \frac{dc^{RNAP}_{ini1}[t]}{dt}\: =\: c^{RNAP}_{open}[t] \cdot c^{ATP}[t] \cdot c^{X_1 TP}[t] \cdot k^{tc}_{ini1} - c^{RNAP}_{ini1}[t] \cdot c^{X_2 TP}[t] \cdot k^{tc}_{inix} \]
\[ tc0(8.1): \;\;\; \frac{dc^{RNAP}_{ini}[i][t]}{dt}\: =\: c^{RNAP}_{ini}[i-1][t] \cdot c^{X_i TP}[t] \cdot k^{tc}_{inix} - c^{RNAP}_{ini}[i][t] \cdot c^{X_i+1 TP}[t] \cdot k^{tc}_{inix} \; , \] \[ \hphantom{tc0(8.1): \;\;\; \frac{dc^{RNAP}_{ini}[i][t]}{dt}\: =\: } (i = 2, ..., l^{ini-1}) \] \[ tc0(8.2): \;\;\; \frac{dc^{RNAP}_{ini}[1][t]}{dt}\: =\: \frac{dc^{RNAP}_{ini1}[t]}{dt} \] \[ tc0(8.3): \;\;\; \frac{dc^{RNAP}_{ini}[-1][t]}{dt}\: =\: c^{RNAP}_{ini}[-2][t] \cdot c^{X_-1 TP}[t] \cdot k^{tc}_{inix} - c^{RNAP}_{ini}[-1][t] \cdot (k^{tc}_{iniab} + k^{tc}_{prel}) \]
\[ tc0(9): \;\;\; \frac{dc^{RNAP}_{prel}[t]}{dt}\: =\: c^{RNAP}_{ini}[-1][t] \cdot k^{tc}_{prel} - c^{RNAP}_{prel}[t] \cdot c^{X_1 TP}[t] \cdot k^{tc}_{elong} \]
\[ tc0(10.1): \;\;\; \frac{dc^{RNAP}_{elong}[i][t]}{dt}\: =\: c^{RNAP}_{elong}[i-1][t] \cdot (1 - prob^{tc}_{mm}) \cdot c^{X_i TP}[t] \cdot k^{tc}_{elong} \] \[ \hphantom{tc0(10.1): \;\;\; \frac{dc^{RNAP}_{elong}[i][t]}{dt}\: =\: } - c^{RNAP}_{elong}[i][t] \cdot ((1 - prob^{tc}_{mm}) \cdot c^{X_1 TP}[t] \cdot k^{tc}_{elong} + prob^{tc}_{mm} \cdot (c^{NTPs}[t] - c^{X_1 TP}[t]) \cdot k^{tc}_{elong}) \] \[ \hphantom{tc0(10.1): \;\;\; \frac{dc^{RNAP}_{elong}[i][t]}{dt}\: =\: } \left[ + c^{RNAP}_{elongGreAB}[j + l^{mRNA}_{cl}][t] \cdot k^{GreAB}_{cat} \right]_{ for j = 2, ..., l^{elong} - l^{mRNA}_{cl} } \; , \] \[ \hphantom{tc0(10.1): \;\;\; \frac{dc^{RNAP}_{elong}[i][t]}{dt}\: =\: } (i = 2, ..., l^{elong-1}),\: (j = i) \] \[ tc0(10.2): \;\;\; \frac{dc^{RNAP}_{elong}[1][t]}{dt}\: =\: c^{RNAP}_{prel}[t] \cdot (1 - prob^{tc}_{mm}) \cdot c^{X_1 TP}[t] \cdot k^{tc}_{elong} \] \[ \hphantom{tc0(10.2): \;\;\; \frac{dc^{RNAP}_{elong}[1][t]}{dt}\: =\: } - c^{RNAP}_{elong}[1][t] \cdot ((1 - prob^{tc}_{mm}) \cdot c^{X_1 TP}[t] \cdot k^{tc}_{elong} + prob^{tc}_{mm} \cdot (c^{NTPs}[t] - c^{X_1 TP}[t]) \cdot k^{tc}_{elong}) \] \[ \hphantom{tc0(10.2): \;\;\; \frac{dc^{RNAP}_{elong}[1][t]}{dt}\: =\: } + c^{RNAP}_{elongGreAB}[l^{mRNA}_{cl}][t] \cdot k^{GreAB}_{cat} \] \[ tc0(10.3): \;\;\; \frac{dc^{RNAP}_{elong}[-1][t]}{dt}\: =\: c^{RNAP}_{elong}[-2][t] \cdot (1 - prob^{tc}_{mm}) \cdot c^{X_{-1} TP}[t] \cdot k^{tc}_{elong} \] \[ \hphantom{tc0(10.3): \;\;\; \frac{dc^{RNAP}_{elong}[-1][t]}{dt}\: =\: } - c^{RNAP}_{elong}[-1][t] \cdot l^{mRNA} \cdot c^{pprot} * k^{pprot}_{on} \]
\[ tc0(11.1): \;\;\; \frac{dc^{RNAP}_{elongter}[i][t]}{dt}\: =\: (c^{RNAP}_{elongter}[i-1][t] - c^{RNAP}_{elongter}[i][t]) \cdot c^{ATP}[t] \cdot k^{pprot}_{cat} \] \[ \hphantom{tc0(11.1): \;\;\; \frac{dc^{RNAP}_{elongter}[i][t]}{dt}\: =\: } + c^{RNAP}_{elong}[i] \cdot c^{pprot} \cdot k^{pprot}_{on} \; , \] \[ \hphantom{tc0(11.1): \;\;\; \frac{dc^{RNAP}_{elongter}[i][t]}{dt}\: =\: } (i = 2, ..., l^{mRNA}-1) \] \[ tc0(11.2): \;\;\; \frac{dc^{RNAP}_{elongter}[-1][t]}{dt}\: =\: c^{RNAP}_{elongter}[-2][t] \cdot c^{ATP}[t] \cdot k^{pprot}_{cat} - c^{RNAP}_{elongter}[-1][t] * k^{RNAP}_{diss} \] \[ \hphantom{tc0(11.2): \;\;\; \frac{dc^{RNAP}_{elongter}[-1][t]}{dt}\: =\: } + c^{RNAP}_{elong}[-1][t] \cdot c^{pprot}[t] \cdot k^{pprot}_{on} \]
\[ tc0(12): \;\;\; \frac{dc^{mRNA}[t]}{dt}\: =\: c^{RNAP}_{elongter}[-1][t] \cdot k^{RNAP}_{diss} - c^{RNAse}_{onmRNA}[t] \cdot k^{RNAse}_{cat} \]
\[ tc0(13): \;\;\; \frac{dc^{RNAP}_{elongmm}[i][t]}{dt}\: =\: c^{RNAP}_{elong}[i-1][t] \cdot prob^{tc}_{mm} \cdot (c^{NTPs}[t] - c^{X_1 TP}[t]) \cdot k^{tc}_{elong} \] \[ \hphantom{tc0(13): \;\;\; \frac{dc^{RNAP}_{elongmm}[i][t]}{dt}\: =\: } - c^{RNAP}_{elongmm}[i][t] \cdot c^{GreAB}[t] \cdot k^{GreAB}_{on} \]
\[ tc0(14): \;\;\; \frac{dc^{RNAP}_{elongGreAB}[i][t]}{dt}\: =\: c^{RNAP}_{elongmm}[i][t] \cdot c^{GreAB}[t] \cdot k^{GreAB}_{on} - c^{RNAP}_{elongGreAB}[i][t] \cdot k^{GreAB}_{cat} \]
\[ tc0(15): \;\;\; \frac{dc^{RNAse}[t]}{dt}\: =\: c^{RNAse}_{bound}[t] \cdot k^{RNAse}_{gain} - c^{RNAse}[t] \cdot k^{RNAse}_{loss} \] \[ \hphantom{tc0(15): \;\;\; \frac{dc^{RNAse}[t]}{dt}\: =\: } + (c^{RNAse}_{onmRNAcl}[t] + c^{RNAse}_{onmRNAab}[t] + c^{RNAse}_{onmRNA}[t]) \cdot k^{RNAse}_{cat} \] \[ \hphantom{tc0(15): \;\;\; \frac{dc^{RNAse}[t]}{dt}\: =\: } - (c^{mRNAcl}[t] + c^{mRNAab}[t] + c^{mRNA}[t]) \cdot c^{RNAse}[t] \cdot k^{RNAse}_{on} \]
\[ tc0(16): \;\;\; \left( \frac{dc^{RNAse}_{onmRNA}[t]}{dt} ,\: \frac{dc^{RNAse}_{onmRNAab}[t]}{dt} ,\: \frac{dc^{RNAse}_{onmRNAcl}[t]}{dt} \right) \] \[ \hphantom{tc0(16): \;\;\; } = c^{RNAse}[t] \cdot (c^{mRNA}[t],\: c^{mRNAab}[t],\: c^{mRNAcl}[t]) \cdot k^{RNAse}_{on} - \left( c^{RNAse}_{onmRNA}[t],\: c^{RNAse}_{onmRNAab}[t],\: c^{RNAse}_{onmRNAcl}[t] \right) \cdot k^{RNAse}_{cat} \]
\[ tc0(17): \;\;\; \frac{dc^{mRNAab}[t]}{dt}\: =\: c^{RNAP}_{ini}[-1][t] \cdot k^{tc}_{iniab} - c^{RNAse}_{onmRNAab}[t] \cdot k^{RNAse}_{cat} \]
\[ tc0(18): \;\;\; \frac{dc^{mRNAcl}[t]}{dt}\: =\: \sum \limits_{i=1}^n c^{RNAP}_{elongGreAB}[i][t] \cdot k^{GreAB}_{cat} + 2 \cdot c^{RNAse}_{onmRNA}[t] \cdot k^{RNAse}_{cat} - c^{RNAse}_{onmRNAcl}[t] \cdot k^{RNAse}_{cat} \]
\[ tc0(19.1): \;\;\; \frac{dc^{entity}_{bound}[t]}{dt}\: =\: c^{entity}[t] \cdot k^{entity}_{loss} - c^{entity}_{bound}[t] \cdot k^{entity}_{gain}, \] \[ \hphantom{tc0(19.1): \;\;\; \frac{dc^{entity}_{bound}[t]}{dt}\: =\: } (entity \notin \{RNAP, RNAPsigma\}) \] \[ tc0(19.2): \;\;\; \left( \frac{dc^{RNAP}_{bound}[t]}{dt},\: \frac{dc^{RNAPsigma}_{bound}[t]}{dt} \right) \] \[ \hphantom{tc0(19.2): \;\;\; } = c^{RNAP}[t] \cdot k^{RNAP}_{loss} - c^{RNAP}_{bound}[t] \cdot k^{RNAP}_{gain} + \left( c^{RNAPsigma}_{bound}[t],\: - c^{RNAPsigma}_{bound}[t] \right) \cdot k^{sigma}_{off} \]
\[ tc0(20): \;\;\; \frac{dc^{pprot}[t]}{dt}\: =\: c^{pprot}_{bound}[t] \cdot k^{pprot}_{gain} - c^{pprot}[t] \cdot k^{pprot}_{loss} \] \[ \hphantom{tc0(20): \;\;\; \frac{dc^{pprot}[t]}{dt}\: =\: } + c^{RNAP}_{elongter}[-1][t] \cdot k^{RNAP}_{diss} - c^{RNAP}_{elong}[-1][t] \cdot l^{mRNA} \cdot c^{pprot}[t] \cdot k^{pprot}_{on} \]
\[ tc0(21): \;\;\; \frac{dc^{GreAB}[t]}{dt}\: =\: c^{GreAB}_{bound}[t] \cdot k^{GreAB}_{gain} - c^{GreAB}[t] \cdot k^{GreAB}_{loss} \] \[ \hphantom{tc0(21): \;\;\; \frac{dc^{GreAB}[t]}{dt}\: =\: } + \sum \limits_{i=1}^n c^{RNAP}_{elongGreAB}[i][t] \cdot k^{GreAB}_{cat} - \sum \limits_{i=1}^n c^{RNAP}_{elongmm}[i][t] \cdot c^{GreAB}[t] \cdot k^{GreAB}_{on} \]
\[ tc0(22): \;\;\; \frac{dc^{NTP}[t]}{dt}\: =\: - \sum \limits_{i=2, X_i=N}^n c^{RNAP}_{ini}[i-1][t] \cdot c^{X_i TP}[t] \cdot k^{tc}_{inix} \] \[ \hphantom{tc0(22): \;\;\; \frac{dc^{NTP}[t]}{dt}\: =\: } - c^{RNAP}_{prel}[t] \cdot (1 - prob^{tc}_{mm}) \cdot c^{X_1 TP}[t] \cdot k^{tc}_{elong} \] \[ \hphantom{tc0(22): \;\;\; \frac{dc^{NTP}[t]}{dt}\: =\: } - \sum \limits_{i=2, X_i=N}^{n-1} c^{RNAP}_{elong}[i-1][t] \cdot (1 - prob^{tc}_{mm}) \cdot c^{X_i TP}[t] \cdot k^{tc}_{elong} \] \[ \hphantom{tc0(22): \;\;\; \frac{dc^{NTP}[t]}{dt}\: =\: } \left[ - c^{RNAP}_{open}[t] \cdot c^{ATP}[t] \cdot c^{X_1 TP}[t] \cdot k^{tc}_{ini1}\right]_{for X_1 = N} \] \[ \hphantom{tc0(22): \;\;\; \frac{dc^{NTP}[t]}{dt}\: =\: } \left[ - c^{RNAP}_{open}[t] \cdot c^{ATP}[t] \cdot c^{NTP}[t] \cdot k^{tc}_{ini1} - \sum \limits_{i=1}^{n-1} c^{RNAP}_{elongter}[i][t] \cdot c^{ATP}[t] \cdot k^{pprot}_{cat}\right]_{for N = A} \]
\[ tc0(23): \;\;\; \frac{dc^{NTPs}[t]}{dt}\: =\: \frac{dc^{ATP}[t]}{dt} + \frac{dc^{TTP}[t]}{dt} + \frac{dc^{GTP}[t]}{dt} + \frac{dc^{CTP}[t]}{dt} \]
Translation
# ODEs: 61 (Simplified: 52) (Shared: cmRNA)# Parameter: (Simplified: 32) (Shared: lDNA)
ODE System
Amino Acid Activation
\[ tl0(1): \;\;\; \frac{dc^{AaxtRNASyn}[t]}{dt}\: =\: c^{AaxtRNASyn}_{AaatRNA}[t] \cdot k^{AaxtRNASyn}_{cat2} \] \[ \hphantom{tl0(1): \;\;\; \frac{dc^{AaxtRNASyn}[t]}{dt}\: =\: } + c^{AaxtRNASyn}_{Aax}[t] \cdot k^{Aax}_{off} - c^{AaxtRNASyn}_{Aax}[t] \cdot c^{Aax}[t] \cdot k^{Aax}_{on} \]
\[ tl0(2): \;\;\; \frac{dc^{AaxtRNASyn}_{Aax}[t]}{dt}\: =\: c^{AaxtRNASyn}[t] \cdot c^{Aax}[t] \cdot k^{Aax}_{on} - c^{AaxtRNASyn}_{Aax}[t] \cdot k^{Aax}_{off} \] \[ \hphantom{tl0(2): \;\;\; \frac{dc^{AaxtRNASyn}_{Aax}[t]}{dt}\: =\: } - c^{AaxtRNASyn}_{Aax}[t] \cdot c^{ATP}[t] \cdot k^{AaxtRNASyn}_{cat1} \]
\[ tl0(3): \;\;\; \frac{dc^{AaxtRNASyn}_{Aaa}[t]}{dt}\: =\: c^{AaxtRNASyn}_{Aax}[t] \cdot c^{ATP}[t] \cdot k^{AaxtRNASyn}_{cat1} \] \[ \hphantom{tl0(3): \;\;\; \frac{dc^{AaxtRNASyn}_{Aaa}[t]}{dt}\: =\: } + c^{AaxtRNASyn}_{AaatRNA}[t] \cdot k^{tRNA}_{off} - c^{AaxtRNASyn}_{AaatRNA}[t] \cdot k^{AaxtRNASyn}_{cat2} \]
\[ tl0(4): \;\;\; \frac{dc^{AaxtRNASyn}_{AaatRNA}[t]}{dt}\: =\: + c^{AaxtRNASyn}_{Aaa}[t] \cdot c^{tRNA}[t] \cdot k^{tRNA}_{on} - c^{AaxtRNASyn}_{AaatRNA}[t] \cdot k^{tRNA}_{off} \] \[ \hphantom{tl0(4): \;\;\; \frac{dc^{AaxtRNASyn}_{AaatRNA}[t]}{dt}\: =\: } - c^{AaxtRNASyn}_{AaatRNA}[t] \cdot k^{AaxtRNASyn}_{cat2} \]
\[ tl0(5): \;\;\; \frac{dc^{AaxtRNA}[t]}{dt}\: =\: c^{AaxtRNASyn}_{AaatRNA}[t] \cdot k^{AaxtRNASyn}_{cat2} \] \[ \hphantom{tl0(5): \;\;\; \frac{dc^{AaxtRNA}[t]}{dt}\: =\: } + c^{AaxtRNA}_{EFTu}[t] \cdot k^{EFTu}_{off} - c^{AaxtRNA}[t] \cdot c^{EFTu}[t] \cdot k^{EFTu}_{on} \] \[ \hphantom{tl0(5): \;\;\; \frac{dc^{AaxtRNA}[t]}{dt}\: =\: } + c^{tl}_{el1mm}[t] \cdot k^{AaxtRNA}_{reject} \]
\[ tl0(6): \;\;\; \frac{dc^{ftrans}[t]}{dt}\: =\: c^{ftrans}_{MettRNAfMet}[t] \cdot k^{MettRNAfMet}_{off} - c^{ftrans}[t] \cdot c^{MettRNAfMet}[t] \cdot k^{MettRNAfMet}_{on} \] \[ \hphantom{tl0(6): \;\;\; \frac{dc^{ftrans}[t]}{dt}\: =\: } + c^{ftrans}_{MettRNAfMet}[t] \cdot c^{f}[t] \cdot k^{ftrans}_{cat} - c^{ftrans}[t] \cdot c^{fMettRNAfMet}[t] \cdot c^{t}[t] \cdot k^{ftrans}_{deg} \]
\[ tl0(7): \;\;\; \frac{dc^{ftrans}_{MettRNAfMet}[t]}{dt}\: =\: c^{ftrans}[t] \cdot c^{MettRNAfMet}[t] \cdot k^{MettRNAfMet}_{on} - c^{ftrans}_{MettRNAfMet}[t] \cdot k^{MettRNAfMet}_{off} \] \[ \hphantom{tl0(7): \;\;\; \frac{dc^{ftrans}_{MettRNAfMet}[t]}{dt}\: =\: } + c^{ftrans}[t] \cdot c^{fMettRNAfMet}[t] \dot c^{t}[t] \cdot k^{ftrans}_{deg} - c^{ftrans}_{MettRNAfMet}[t] \cdot c^{f}[t] \cdot k^{ftrans}_{cat} \]
\[ tl0(8): \;\;\; \frac{dc^{fMettRNAfMet}[t]}{dt}\: =\: c^{ftrans}_{MettRNAfMet}[t] \cdot c^{f}[t] \cdot k^{ftrans}_{cat} - c^{ftrans}[t] \cdot c^{fMettRNAfMet}[t] \cdot c^{t}[t] \cdot k^{ftrans}_{deg} \] \[ \hphantom{tl0(8): \;\;\; \frac{dc^{fMettRNAfMet}[t]}{dt}\: =\: } + c^{tl}_{ini2}[t] \cdot k^{fMettRNAfMet}_{off} - c^{tl}_{ini1}[t] \cdot c^{fMettRNAfMet}[t] \cdot k^{fMettRNAfMet}_{on} \]
Initialization
\[ tl0(9): \;\;\; \frac{dc^{70s}[t]}{dt}\: =\: c^{30s}[t] \cdot c^{50s}[t] \cdot k^{50s}_{bind} - c^{70s}[t] \cdot c^{IF3}[t] \cdot k^{IF3}_{on} \]
\[ tl0(10): \;\;\; \frac{dc^{70sIF3}[t]}{dt}\: =\: c^{70s}[t] \cdot c^{IF3}[t] \cdot k^{IF3}_{on} - c^{70sIF3}[t] \cdot k^{IF3}_{off} \] \[ \hphantom{tl0(10): \;\;\; \frac{dc^{70sIF3}[t]}{dt}\: =\: } - c^{70sIF3}[t] \cdot k^{50s}_{diss} \]
\[ tl0(11): \;\;\; \frac{dc^{30sIF3}[t]}{dt}\: =\: c^{70sIF3}[t] \cdot k^{50s}_{diss} - c^{30sIF3}[t] \cdot k^{IF3}_{off} \] \[ \hphantom{tl0(11): \;\;\; \frac{dc^{30sIF3}[t]}{dt}\: =\: } + c^{30sIF3IF1}[t] \cdot k^{IF1}_{off} - c^{30sIF3}[t] \cdot c^{IF1}[t] \cdot k^{IF1}_{on} \]
\[ tl0(12): \;\;\; \frac{dc^{30sIF3IF1}[t]}{dt}\: =\: c^{30sIF3}[t] \cdot c^{IF1}[t] \cdot k^{IF1}_{on} - c^{30sIF3IF1}[t] \cdot k^{IF1}_{off} \] \[ \hphantom{tl0(12): \;\;\; \frac{dc^{30sIF3IF1}[t]}{dt}\: =\: } + c^{tl}_{ini0}[t] \cdot k^{mRNA}_{off} - c^{30sIF3IF1}[t] \cdot c^{mRNA}[t] \cdot k^{mRNA}_{on} \]
\[ tl0(13): \;\;\; \frac{dc^{tl}_{ini0}[t]}{dt}\: =\: c^{30sIF3IF1}[t] \cdot c^{mRNA}[t] \cdot k^{mRNA}_{on} - c^{tl}_{ini0}[t] \cdot k^{mRNA}_{off} \] \[ \hphantom{tl0(13): \;\;\; \frac{dc^{tl}_{ini0}[t]}{dt}\: =\: } + c^{tl}_{ini1}[t] \cdot k^{IF2}_{off} - c^{tl}_{ini0}[t] \cdot c^{IF2}[t] \cdot k^{IF2}_{on} \]
\[ tl0(14): \;\;\; \frac{dc^{tl}_{ini1}[t]}{dt}\: =\: c^{tl}_{ini0}[t] \cdot c^{IF2}[t] \cdot k^{IF2}_{on} - c^{tl}_{ini1}[t] \cdot k^{IF2}_{off} \] \[ \hphantom{tl0(14): \;\;\; \frac{dc^{tl}_{ini1}[t]}{dt}\: =\: } + c^{tl}_{ini2}[t] \cdot k^{fMettRNAfMet}_{off} - c^{tl}_{ini1}[t] \cdot c^{fMettRNAfMet}[t] \cdot k^{fMettRNAfMet}_{on} \]
\[ tl0(15): \;\;\; \frac{dc^{tl}_{ini2}[t]}{dt}\: =\: c^{tl}_{ini1}[t] \cdot c^{fMettRNAfMet}[t] \cdot k^{fMettRNAfMet}_{on} - c^{tl}_{ini2}[t] \cdot k^{fMettRNAfMet}_{off} \] \[ \hphantom{tl0(15): \;\;\; \frac{dc^{tl}_{ini2}[t]}{dt}\: =\: } + c^{tl}_{inidissIF3}[t] \cdot c^{IF3}[t] \cdot k^{IF3}_{bind} - c^{tl}_{ini2}[t] \cdot k^{IF3}_{diss} \]
\[ tl0(16): \;\;\; \frac{dc^{tl}_{inidissIF3}[t]}{dt}\: =\: c^{tl}_{ini2}[t] \cdot k^{IF3}_{diss} - c^{tl}_{inidissIF3}[t] \cdot c^{IF3}[t] \cdot k^{IF3}_{bind} \] \[ \hphantom{tl0(16): \;\;\; \frac{dc^{tl}_{inidissIF3}[t]}{dt}\: =\: } + c^{tl}_{inion50s}[t] \cdot k^{50s}_{off} - c^{tl}_{inidissIF3}[t] \cdot c^{50s}[t] \cdot k^{50s}_{on} \]
\[ tl0(17): \;\;\; \frac{dc^{tl}_{inion50s}[t]}{dt}\: =\: c^{tl}_{inidissIF3}[t] \cdot c^{50s}[t] \cdot k^{50s}_{on} - c^{tl}_{inion50s}[t] \cdot k^{50s}_{off} \] \[ \hphantom{tl0(17): \;\;\; \frac{dc^{tl}_{inion50s}[t]}{dt}\: =\: } + c^{tl}_{inidissIF1}[t] \cdot c^{IF1}[t] \cdot k^{IF1}_{bind} - c^{tl}_{inion50s}[t] \cdot k^{IF1}_{diss} \]
\[ tl0(18): \;\;\; \frac{dc^{tl}_{inidissIF1}[t]}{dt}\: =\: c^{tl}_{inion50s}[t] \cdot k^{IF1}_{diss} - c^{tl}_{inidissIF1}[t] \cdot c^{IF1}[t] \cdot k^{IF1}_{bind} \] \[ \hphantom{tl0(18): \;\;\; \frac{dc^{tl}_{inidissIF1}[t]}{dt}\: =\: } - c^{tl}_{inidissIF1}[t] * k^{IF2}_{cat} \]
\[ tl0(19): \;\;\; \frac{dc^{tl}_{inicat}[t]}{dt}\: =\: c^{tl}_{inidissIF1}[t] \cdot k^{IF2}_{cat} - c^{tl}_{inicat}[t] \cdot k^{IF2}_{diss} \]
\[ tl0(20): \;\;\; \frac{dc^{IF1}[t]}{dt}\: =\: c^{30sIF3IF1}[t] \cdot k^{IF1}_{off} - c^{30sIF3}[t] \cdot c^{IF1}[t] \cdot k^{IF1}_{on} \] \[ \hphantom{tl0(20): \;\;\; \frac{dc^{IF1}[t]}{dt}\: =\: } + c^{tl}_{inion50s}[t] \cdot k^{IF1}_{diss} - c^{tl}_{inidissIF1}[t] \cdot c^{IF1}[t] \cdot k^{IF1}_{bind} \]
\[ tl0(21): \;\;\; \frac{dc^{IF3}[t]}{dt}\: =\: (c^{70sIF3}[t] + c^{30sIF3}[t]) \cdot k^{IF3}_{off} - (c^{70s} + c^{30s}) \cdot k^{IF3}_{on} \] \[ \hphantom{tl0(21): \;\;\; \frac{dc^{IF3}[t]}{dt}\: =\: } + c^{tl}_{ini2}[t] \cdot k^{IF3}_{diss} - c^{tl}_{inidissIF3}[t] \cdot c^{IF3}[t] \cdot k^{IF3}_{bind} \]
\[ tl0(22): \;\;\; \frac{dc^{IF2}[t]}{dt}\: =\: c^{tl}_{ini1}[t] \cdot k^{IF2}_{off} - c^{tl}_{ini0}[t] \cdot c^{IF2}[t] \cdot k^{IF2}_{on} \] \[ \hphantom{tl0(22): \;\;\; \frac{dc^{IF2}[t]}{dt}\: =\: } + c^{IF2}_{GDP}[t] \cdot c^{GTP}[t] \cdot k^{IF2}_{reg} - c^{IF2}[t] \cdot c^{GDP}[t] \cdot k^{IF2}_{deg} \]
\[ tl0(23): \;\;\; \frac{dc^{IF2}_{GDP}[t]}{dt}\: =\: c^{tl}_{inicat}[t] \cdot k^{IF2}_{diss} \] \[ \hphantom{tl0(23): \;\;\; \frac{dc^{IF2}_{GDP}[t]}{dt}\: =\: } + c^{IF2}[t] \cdot c^{GDP}[t] \cdot k^{IF2}_{deg} - c^{IF2}_{GDP}[t] \cdot c^{GTP}[t] \cdot k^{IF2}_{reg} \]
Elongation.
\[ tl0(24.1): \;\;\; \frac{dc^{tl}_{el0}[i][t]}{dt}\: =\: c^{tl}_{el0AaxtRNA}[i][t] \cdot k^{AaxtRNAEFTu}_{off} - c^{tl}_{el0}[i] \cdot c^{AaxtRNA}_{EFTu}[t] \cdot k^{AaxtRNAEFTu}_{on} \] \[ \hphantom{tl0(24.1): \;\;\; \frac{dc^{tl}_{el0}[i][t]}{dt}\: =\: } + c^{tl}_{el1mm}[i][t] \cdot k^{tRNA}_{reject} + c^{tl}_{el3}[i-1] \cdot k^{tRNA}_{dissel} \; , \] \[ \hphantom{tl0(24.1): \;\;\; \frac{dc^{tl}_{el0}[i][t]}{dt}\: =\: } (i = 2, ..., l^{mRNAcodons}) \] \[ tl0(24.2): \;\;\; \frac{dc^{tl}_{el0[1]}[t]}{dt}\: =\: c^{tl}_{inicat}[t] \cdot k^{IF2}_{diss} \] \[ \hphantom{tl0(24.2): \;\;\; \frac{dc^{tl}_{el0[1]}[t]}{dt}\: =\: } + c^{tl}_{el0AaxtRNA}[0][t] \cdot k^{AaxtRNAEFTu}_{off} - c^{tl}_{el0}[0] \cdot c^{AaxtRNA}_{EFTu}[t] \cdot k^{AaxtRNAEFTu}_{on} \] \[ \hphantom{tl0(24.2): \;\;\; \frac{dc^{tl}_{el0[1]}[t]}{dt}\: =\: } + c^{tl}_{el1mm}[0][t] \cdot k^{tRNA}_{reject} \]
\[ tl0(25): \;\;\; \frac{dc^{tl}_{el0AaxtRNA}[i][t]}{dt}\: =\: c^{tl}_{el0}[i] \cdot c^{AaxtRNA}_{EFTu}[t] \cdot k^{AaxtRNAEFTu}_{on} - c^{tl}_{el0AaxtRNA}[i][t] \cdot k^{AaxtRNAEFTu}_{off} \] \[ \hphantom{tl0(25): \;\;\; \frac{dc^{tl}_{el0AaxtRNA}[i][t]}{dt}\: =\: } - c^{tl}_{el0AaxtRNA}[i][t] \cdot k^{EFTu}_{cat} \; , \] \[ \hphantom{tl0(25): \;\;\; \frac{dc^{tl}_{el0AaxtRNA}[i][t]}{dt}\: =\: } (i = 1, ..., l^{mRNAcodons}) \]
\[ tl0(26): \;\;\; \frac{dc^{tl}_{el0cat}[i][t]}{dt}\: =\: c^{tl}_{el0AaxtRNA}[i][t] \cdot k^{EFTu}_{cat} - c^{tl}_{el0cat}[i][t] \cdot k^{EFTu}_{diss} \; , \] \[ \hphantom{tl0(26): \;\;\; \frac{dc^{tl}_{el0cat}[i][t]}{dt}\: =\: } (i = 1, ..., l^{mRNAcodons}) \]
\[ tl0(27): \;\;\; \frac{dc^{tl}_{el1raw}[i][t]}{dt}\: =\: c^{tl}_{el0cat}[i][t] \cdot k^{EFTu}_{diss} - c^{tl}_{el1raw}[i][t] \cdot k^{tl}_{proof} \; , \] \[ \hphantom{tl0(27): \;\;\; \frac{dc^{tl}_{el1raw}[i][t]}{dt}\: =\: } (i = 1, ..., l^{mRNAcodons}) \]
\[ tl0(28): \;\;\; \frac{dc^{tl}_{el1proof}[i][t]}{dt}\: =\: c^{tl}_{el1raw}[i][t] \cdot k^{tl}_{proof} - c^{tl}_{el1proof}[i][t] \cdot \left( prob^{tl}_{mm} + (1 - prob^{tl}_{mm}) \right) \; , \] \[ \hphantom{tl0(28): \;\;\; \frac{dc^{tl}_{el1proof}[i][t]}{dt}\: =\: } (i = 1, ..., l^{mRNAcodons}) \]
\[ tl0(29): \;\;\; \frac{dc^{tl}_{el1correct}[i][t]}{dt}\: =\: c^{tl}_{el1proof}[i][t] \cdot (1 - prob^{tl}_{mm}) - c^{tl}_{el1correct}[i][t] \cdot k^{tl}_{elong} \; , \] \[ \hphantom{tl0(29): \;\;\; \frac{dc^{tl}_{el1correct}[i][t]}{dt}\: =\: } (i = 1, ..., l^{mRNAcodons}) \]
\[ tl0(30): \;\;\; \frac{dc^{tl}_{el2}[i][t]}{dt}\: =\: c^{tl}_{el1correct}[i][t] \cdot k^{tl}_{elong} \] \[ \hphantom{tl0(30): \;\;\; \frac{dc^{tl}_{el2}[i][t]}{dt}\: =\: } + c^{tl}_{el2EFG}[i][t] \cdot k^{EFG}_{off} - c^{tl}_{el2}[i][t] \cdot c^{EFG}[t] \cdot k^{EFG}_{on} \; , \] \[ \hphantom{tl0(30): \;\;\; \frac{dc^{tl}_{el2}[i][t]}{dt}\: =\: } (i = 1, ..., l^{mRNAcodons}) \] \[ tl0(31.1): \;\;\; \frac{dc^{tl}_{el2EFG}[i][t]}{dt}\: =\: c^{tl}_{el2}[i][t] \cdot c^{EFG}[t] \cdot k^{EFG}_{on} - c^{tl}_{el2EFG}[i][t] \cdot k^{EFG}_{off} \] \[ \hphantom{tl0(31.1): \;\;\; \frac{dc^{tl}_{el2EFG}[i][t]}{dt}\: =\: } - c^{tl}_{el2EFG}[i][t] \cdot k^{EFG}_{cat} \; , \] \[ \hphantom{tl0(31.1): \;\;\; \frac{dc^{tl}_{el2EFG}[i][t]}{dt}\: =\: } (i = 1, ..., l^{mRNAcodons}) \] \[ tl0(31.2): \;\;\; \frac{dc^{tl}_{el2EFGcat}[i][t]}{dt}\: =\: c^{tl}_{el2EFG}[i][t] \cdot k^{EFG}_{cat} - c^{tl}_{el2EFGcat}[i][t] \cdot k^{tl}_{trans} \; , \] \[ \hphantom{tl0(31.2): \;\;\; \frac{dc^{tl}_{el2EFGcat}[i][t]}{dt}\: =\: } (i = 1, ..., l^{mRNAcodons}) \] \[ tl0(31.3): \;\;\; \frac{dc^{tl}_{el2EFGtrans}[i][t]}{dt}\: =\: c^{tl}_{el2EFGcat}[i][t] \cdot k^{tl}_{trans} - c^{tl}_{el2EFGtrans}[i][t] \cdot k^{EFG}_{diss} \; , \] \[ \hphantom{tl0(31.3): \;\;\; \frac{dc^{tl}_{el2EFGtrans}[i][t]}{dt}\: =\: } (i = 1, ..., l^{mRNAcodons}) \]
\[ tl0(32): \;\;\; \frac{dc^{tl}_{el3}[i][t]}{dt}\: =\: c^{tl}_{el2EFGtrans}[i][t] \cdot k^{EFG}_{diss} - c^{tl}_{el3}[i][t] \cdot k^{tRNA}_{dissel} \; , \] \[ \hphantom{tl0(32): \;\;\; \frac{dc^{tl}_{el3}[i][t]}{dt}\: =\: } (i = 1, ..., l^{mRNAcodons}) \]
\[ tl0(33): \;\;\; \frac{dc^{AaxtRNA}_{EFTu}[t]}{dt}\: =\: c^{AaxtRNA}[t] \cdot c^{EFTu}[t] \cdot k^{EFTu}_{on} - c^{AaxtRNA}_{EFTu}[t] \cdot k^{EFTu}_{off} \] \[ \hphantom{tl0(33): \;\;\; \frac{dc^{AaxtRNA}_{EFTu}[t]}{dt}\: =\: } + \sum \limits_{i=1}^{n} c^{tl}_{el0AaxtRNA}[i][t] \cdot k^{AaxtRNAEFTu}_{off} \] \[ \hphantom{tl0(33): \;\;\; \frac{dc^{AaxtRNA}_{EFTu}[t]}{dt}\: =\: } - \sum \limits_{i=1}^{n} c^{tl}_{el0}[i][t] \cdot c^{AaxtRNA}_{EFTu}[t] \cdot k^{AaxtRNAEFTu}_{on} \]
\[ tl0(34): \;\;\; \frac{dc^{tl}_{el1mm}[i][t]}{dt}\: =\: c^{tl}_{el1raw}[i][t] \cdot prob^{tl}_{mm} - c^{tl}_{el1mm}[i][t] \cdot k^{AaxtRNA}_{reject} \; , \] \[ \hphantom{tl0(34): \;\;\; \frac{dc^{tl}_{el1mm}[i][t]}{dt}\: =\: } (i = 1, ..., l^{mRNAcodons}) \]
\[ tl0(35): \;\;\; \frac{dc^{EFTu}_{GDP}[t]}{dt}\: =\: \sum \limits_{i=1}^{n} c^{tl}_{el0cat}[i][t] \cdot k^{EFTu}_{diss} \] \[ \hphantom{tl0(35): \;\;\; \frac{dc^{EFTu}_{GDP}[t]}{dt}\: =\: } + c^{EFTu}_{GDPEFTS}[t] \cdot k^{EFTS}_{off} - c^{EFTu}_{GDP}[t] \cdot c^{EFTS}[t] \cdot k^{EFTS}_{on} \]
\[ tl0(36): \;\;\; \frac{dc^{EFTu}_{GDPEFTS}[t]}{dt}\: =\: c^{EFTu}_{GDP}[t] \cdot c^{EFTS}[t] \cdot k^{EFTS}_{on} - c^{EFTu}_{GDPEFTS}[t] \cdot k^{EFTS}_{off} \] \[ \hphantom{tl0(36): \;\;\; \frac{dc^{EFTu}_{GDPEFTS}[t]}{dt}\: =\:} + c^{EFTu}_{EFTS}[t] \cdot c^{GDP}[t] \cdot k^{GDP}_{bindTu} - c^{EFTu}_{GDPEFTS}[t] \cdot k^{GDP}_{dissTu} \]
\[ tl0(37): \;\;\; \frac{dc^{EFTu}_{EFTS}[t]}{dt}\: =\: c^{EFTu}_{GDPEFTS}[t] \cdot k^{GDP}_{dissTu} - c^{EFTu}_{EFTS}[t] \cdot c^{GDP}[t] * k^{GDP}_{bindTu} \] + c^EFTu_GTPEFTS[t] * k^GTP_offTu - c^EFTu_EFTS[t] * c^GTP[t] * k^GTP_onTu tl0(38): dc^EFTu_GTPEFTS[t]/dt = c^EFTu_EFTS[t] * c^GTP[t] * k^GTP_onTu - c^EFTu_GTPEFTS[t] * k^GTP_offTu + c^EFTu[t] * c^EFTS[t] * k^EFTS_bind - c^EFTu_GTPEFTS[t] * k^EFTS_diss tl0(39): dc^EFTu[t]/dt = c^AaxtRNA_EFTu[t] * k^EFTu_off - c^EFTu[t] * c^AaxtRNA[t] * k^EFTu_on + c^EFTu_GTPEFTS[t] * k^EFTS_diss - c^EFTu[t] * c^EFTS[t] * k^EFTS_bind tl0(40): dc^EFTS[t]/dt = c^EFTu_GDPEFTS[t] * k^EFTS_off - c^EFTu_GDP[t] * c^EFTS[t] * k^EFTS_on + c^EFTu_GTPEFTS[t] * k^EFTS_diss - c^EFTu[t] * c^EFTS[t] * k^EFTS_bind tl0(41): dc^EFG_GDP[t]/dt = \sum \limits_{i=1}^n c^tl_el2EFGtrans[i][t] * k^EFG_diss + c^EFG_raw[t] * c^GDP[t] * k^GDP_bindG - c^EFG_GDP[t] * k^GDP_dissG tl0(42): dc^EFG_raw[t]/dt = c^EFG_GDP[t] * k^GDP_dissG - c^EFG_raw[t] * c^GDP[t] * k^GDP_bindG + c^EFG[t] * k^GTP_offG - c^EFG_raw[t] * c^GTP[t] * k^GTP_onG tl0(43): dc^EFG[t]/dt = c^EFG_raw[t] * c^GTP[t] * k^GTP_onG - c^EFG[t] * k^GTP_offG + \sum \limits_{i=1}^n c^tl_el2_EFG[i][t] * k^EFG_off - \sum \limits_{i=1}^n c^tl_el2[i][t] * c^EFG[t] * k^EFG_on
Termination.
tl0(44): dc^tl_term0[t]/dt = c^tl_el3[-1][t] * k^tRNA_diss + c^tl_term1[t] * k^RF1_off - c^tl_term0[t] * c^RF1[t] * k^RF1_on tl0(45): dc^tl_term1[t]/dt = c^tl_term0[t] * c^RF1[t] * k^RF1_on - c^tl_term1[t] * k^RF1_off + c^tl_term2[t] * k^RF3_off - c^tl_term1[t] * c^RF3[t] * k^RF3_on tl0(46): dc^tl_term2[t]/dt = c^tl_term1[t] * c^RF3[t] * k^RF3_on - c^tl_term2[t] * k^RF3_off - c^tl_term2[t] * k^protein_diss tl0(47): dc^tl_protrel[t]/dt = c^tl_term2[t] * k^protein_diss - c^tl_protrel[t] * k^30s_diss tl0(48): dc^RF1[t]/dt = c^tl_term1[t] * k^RF1_off - c^tl_term0[t] * c^RF1[t] * k^RF1_on + c^tl_protrel * k^30s_diss tl0(49): dc^RF3[t]/dt = c^tl_term2[t] * k^RF3_off - c^tl_term1[t] * c^RF3[t] * k^RF3_on + c^tl_protrel * k^30s_diss tl0(50): dc^protein[t]/dt = c^tl_term2[t] * k^protein_diss
General.
tl0(51): dc^TLATP[t]/dt = - c^AaxtRNASyn_Aaa[t] * c^ATP[t] * k^AaxtRNASyn_cat1 tl0(52): dc^TLGTP[t]/dt = c^IF2[t] * c^GDP[t] * k^IF2_deg - c^IF2_GDP[t] * c^GTP[t] * k^IF2_reg + c^EFTu_GTPEFTS[t] * k^GTP_offTu - c^EFTu_EFTS[t] * c^GTP[t] * k^GTP_onTu + c^EFG[t] * k^GTP_offG - c^EFG_raw[t] * c^GTP[t] * k^GTP_onG tl0(53): dc^TLGDP[t]/dt = c^IF2_GDP[t] * c^GTP[t] * k^IF2_reg - c^IF2[t] * c^GDP[t] * k^IF2_deg + c^EFTu_GDPEFTS[t] * k^GDP_dissTu - c^EFTu_EFTS[t] * c^GDP[t] * k^GDP_bindTu + c^EFG_GDP[t] * k^GDP_dissG - c^EFG_raw[t] * c^GDP[t] * k^GDP_bindG tl0(54): dc^Aax[t]/dt = c^AaxtRNASyn_Aax[t] * k^Aax_off - c^AaxtRNASyn[t] * c^Aax[t] * k^Aax_on tl0(55): dc^tRNA[t]/dt = c^AaxtRNASyn_AaatRNA[t] * k^tRNA_off - c^AaxtRNASyn_Aaa[t] * c^tRNA[t] * k^tRNA_on + \sum \limits_{i=1}^n c^tl_el3[i][t] * k^tRNA_dissel tl0(56): dc^TLmRNA[t]/dt = c^tl_ini0[t] * k^mRNA_off - c^30sIF3IF1[t] * c^mRNA[t] * k^mRNA_on + c^tl_protrel * k^30s_diss tl0(57): dc^50s[t]/dt = c^70sIF3[t] * k^50s_diss - c^30s[t] * c^50s[t] * k^50s_bind + c^tl_inion50s[t] * k^50s_off - c^tl_inidissIF3[t] * c^50s[t] * k^50s_on + c^tl_protrel * k^30s_diss tl0(58): dc^30s[t]/dt = c^30sIF3[t] * k^IF3_off - c^30s[t] * c^IF3[t] * k^IF3_on - c^30s[t] * c^50s[t] * k^50s_bind + c^tl_protrel * k^30s_diss
3. Diffusion
3.1 Introduction and Motivation
In the final step of cellfree expression proteins produced are diffusing inside the microfluidic chamber. For the ideal case we observed: On the PDMS slide spots of bound DNA produce proteins with steadily decreasing production rate. The product is distributed homogeneously on the spot and starts diffusing freely in the cell-free mix. This is assuming that there are no interactions with other proteins of the cell-free mix. The coated iRIf glass is an ideal sink; any proteins reaching the slide are bound and therefore do not contribute to diffusion anymore. What knowledge did we want to gain by modeling? - Time optimization: When is the most efficient time to stop the expression? - Product optimization: How much of the totally produced proteins does bind to the surface? - Spot distance optimization: How is the bound protein distributed on the glass slide? In order to achiev this we constructed the following system.
3.2 Model System
Effective modeling depends on a wisely chosen assumptions. Assume the following setup: (PIC)
Illustrated above is a crosssection of the system around one spot (A1). Due to assumption A2 the number of geometrical degrees of freedom can be reduced to 2. (PIC: parameters) The physical process is described by the diffusion equation: (Formel: Diffgleichung)
It is an inhomogeneous parabolic partial differential equation (PDE). The diffusion constant κ depends on the media and materials involved in the system, the inhomogenity describes sources and sinks inside the system. The initial and boundary conditions are the following: (Formel: ICs and BCs)
The problem can be solved numerically by application of a "finite differences method". The complete space M is split up into squares. Each square inhibits a concentration value. In an iterative method the diffusion between neighbouring squares is calculated in small time steps. If the step size is chosen small enough and the grid fine enough the diffusion can be simulated. The algorithm is the following: (PIC: Algorithmus)
In a simulation using python (v3.4.2, together with numpy and scipy) depending on time step size, square width, diffusion constant and spot width we could determine binding behaviour on the slide as function of time: (Eingangsparameter, Graphik oder GIF...)
3.3 Assumptions
A1: The spots are equally distributed and distance to the borders of the microfluidic chamber is at least one spot-to-spot distance. A2: The spots are perfect circles and the binding site at the iRIf glass is homohegeneous -> Around one spot cylindrical symmetry is given. A3: The area of produced proteins is as thick as the one of bound ones -> χ = ε A4: ...