Difference between revisions of "Team:Stanford-Brown/Projects"

Line 1: Line 1:
 
{{:Team:Stanford-Brown/Templates/AddCSS|:Team:Stanford-Brown/css/custom}}
 
{{:Team:Stanford-Brown/Templates/AddCSS|:Team:Stanford-Brown/css/custom}}
 +
{{SB2015_NavBar}}
  
 
<html lang="en">
 
<html lang="en">
Line 17: Line 18:
 
<body>
 
<body>
  
<!-- =================== NAVBAR ==================== -->
 
  <div class="container">
 
    <nav class="navbar navbar-material-light-blue navbar-fixed-top oriEdit">
 
 
      <div class="container">
 
 
        <div class="navbar-header">
 
 
          <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false" aria-controls="navbar">
 
 
            <span class="sr-only">Toggle navigation</span>
 
            <span class="icon-bar"></span>
 
            <span class="icon-bar"></span>
 
            <span class="icon-bar"></span>
 
           
 
          </button>
 
          <a class="navbar-brand" href="https://2015.igem.org/Team:Stanford-Brown">SB iGEM</a>
 
        </div>
 
 
        <div id="navbar" class="navbar-collapse collapse">
 
 
          <ul class="nav navbar-nav">
 
 
            <li class="active"><a href="https://2015.igem.org/Team:Stanford-Brown">Home</a></li>
 
 
            <li><a href="https://2015.igem.org/Team:Stanford-Brown/Vision">Vision</a></li>
 
 
            <li class="dropdown">
 
              <a href="" data-target="#" class="dropdown-toggle" data-toggle="dropdown">biOrigami Projects</a>
 
              <ul class="dropdown-menu">
 
                <li><a href="https://2015.igem.org/Team:Stanford-Brown/Projects">Overview</a></li>
 
                <li><a href="https://2015.igem.org/Team:Stanford-Brown/PS">Polystyrene Synthesis</a></li>
 
                <li><a href="https://2015.igem.org/Team:Stanford-Brown/PHA">P(3HB) Synthesis</a></li>
 
                <li><a href="https://2015.igem.org/Team:Stanford-Brown/bioHYDRA">bioHYDRA</a></li>
 
                <li><a href="https://2015.igem.org/Team:Stanford-Brown/Cellulose">Cellulose Sheets</a></li>
 
                <li><a href="https://2015.igem.org/Team:Stanford-Brown/Plastic">Plastic Folding</a></li>
 
              </ul><!-- end dropdown-menu -->
 
            </li><!-- end dropdown -->
 
 
            <li><a href="https://2015.igem.org/Team:Stanford-Brown/CRATER">CRATER</a></li> 
 
 
            <li class="dropdown">
 
              <a href="" data-target="#" class="dropdown-toggle" data-toggle="dropdown">Collaborations</a>
 
              <ul class="dropdown-menu">
 
                <li><a href="https://2015.igem.org/Team:Stanford-Brown/Collaborations">Cellulose Characterization</a></li>
 
                <li><a href="https://2015.igem.org/Team:Stanford-Brown/Interlab">InterLab Measurement Study</a></li>
 
              </ul>
 
            </li> 
 
 
            <li><a href="https://2015.igem.org/Team:Stanford-Brown/Practices">Practices</a></li>
 
 
            <li><a href="https://2015.igem.org/Team:Stanford-Brown/Parts">BioBricks</a></li>
 
 
            <li><a href="https://2015.igem.org/Team:Stanford-Brown/Notebooks">Notebooks</a></li>
 
 
            <li class="dropdown">
 
                <a href="" data-target="#" class="dropdown-toggle" data-toggle="dropdown">About</a>
 
                <ul class="dropdown-menu">
 
                  <li><a href="https://2015.igem.org/Team:Stanford-Brown/Team">Our Team</a></li>
 
                  <li><a href="https://2015.igem.org/Team:Stanford-Brown/Attributions">Attributions</a></li>
 
                  <li><a href="https://2015.igem.org/Team:Stanford-Brown/Gallery">Picture Gallery</a></li>
 
                </ul>
 
              </li>
 
 
            <li><a href="https://2015.igem.org/Team:Stanford-Brown/JudgingAndMedalsCriteria">Achievements</a></li> 
 
 
          </ul><!-- end navbar-nav -->
 
        </div><!-- end navbar-collapse -->
 
      </div><!-- end container -->
 
    </nav><!-- end nav -->
 
  </div><!-- end Navbar Container -->
 
  <div class="jumbotron oridomiLeft">
 
 
     <div class="container">
 
     <div class="container">
 
       <h1>Projects Overview<small> <br> biOrigami for manufacturing in space<small></h1>
 
       <h1>Projects Overview<small> <br> biOrigami for manufacturing in space<small></h1>

Revision as of 23:39, 17 September 2015

Projects

Projects Overview
biOrigami for manufacturing in space

Our Vision to create biOrigami: self-folding, biological origami for space missions

Space exploration lies at the inquisitive core of human nature, yet high costs hinder the advancement of this frontier. We are harnessing the replicative properties of biology to create biOrigami—biological, self-folding origami—to reduce the mass, volume, and assembly time of materials needed for space missions. biOrigami consists of two main components: manufacturing substrates biologically and bioengineering folding mechanisms. For substrates, we are developing new BioBricks to synthesize two thermoplastics: polystyrene and polyhydroxyalkanoates. For folding mechanisms, we are using heat-induced contraction of thermoplastics and the contractile properties of bacterial spores. After consulting with experts, we believe that biOrigami could be incorporated into rovers, solar sails, and more. In addition to biOrigami, we are creating a novel method to efficiently transform bacteria by using the CRISPR/Cas9 system, benefitting the broader synthetic biology community. Our project integrates and improves manufacturing processes for space exploration on both the micro and macro levels.

Our BioBricks

The BioBricks that we submitted to the registry are related to plastic production, cellulose binding, sporulation markers, and pigment production. Click to see more.

How does it work? with heat, evaporation, and materials that could be produced in space.

Bacteria can be engineered to produce thermoplastics, and some species naturally produce cellulose. These materials can be folded with heat and evaporation, respectively. Selectively heating certain parts of a thermoplastic sheet causes the polymers in only that area to contract, causing a macro-scale fold of the sheet. This selective heating can be done by coloring parts of the sheet darker, so they absorb heat faster. As for the evaporation method, bacterial spores expand and contract when in the presence of different levels of relative humidity. Attaching many spores to a long cellulose sheet can cause it to contract, and placing many of these sheets in parallel gives them the ability to move a large amount of weight as the water from the spores evaporates and they all contract in unison.

Generic placeholder image

Polystyrene Engineering E. coli to produce thermoplastics

Polystyrene is widely-used thermoplastic that is resistant to photolysis. Our team worked on creating the first BioBricks for producing polystyrene in vivo. We believe that the properties of this plastic make it attractive for manufacturing objects on long-term missions to other planets.

Generic placeholder image

Poly-3-hydroxybuterate, P(3HB) Optimizing the biological production of more thermoplastics

P(3HB) is a biodegradable, non-toxic biopolymer with properties similar to those of common plastics. It has a low glass transition temperature and can be formed into flat sheets for folding biOrigami. We are building on previous iGEM teams' work to optimize the production of P(3HB) for use in space.

Generic placeholder image

BioHYDRAS creating biological artificial muscles

Based on work done by Chen et al. at Columbia university, we sought to employ the contractile properties of bacterial spores to use as a folding mechanism for biOrigami. Since spores are resistant to high amounts of radiation and dramatic changes in temperature, they could be suitable for use on space missions.

Generic placeholder image

CRATER CRISPR-Assisted Transformation Efficient Reaction

Our team has devised a method of increasing the efficiency of bacterial transformations - a technique used by iGEMers and biologists world-wide.

Generic placeholder image

Copyright © 2015 Stanford-Brown iGEM Team