Difference between revisions of "Team:KU Leuven/Modeling/Toulouse"

Line 236: Line 236:
 
                             <div class="subtext">
 
                             <div class="subtext">
 
                                 <a href="https://2015.igem.org/Team:KU_Leuven/Modeling/Hybrid">
 
                                 <a href="https://2015.igem.org/Team:KU_Leuven/Modeling/Hybrid">
                                     <h2>Hybrid model</h2>
+
                                     <h2>Hybrid</h2>
 
                                     <p> Our hybrid model merges both colony and internal level to define the cell-cell interactions of our pattern forming cells. </p>
 
                                     <p> Our hybrid model merges both colony and internal level to define the cell-cell interactions of our pattern forming cells. </p>
 
                                 </a>
 
                                 </a>
Line 315: Line 315:
 
                         <div class="subimgm">
 
                         <div class="subimgm">
 
                             <a href="https://2015.igem.org/Team:KU_Leuven/Modeling/Top">
 
                             <a href="https://2015.igem.org/Team:KU_Leuven/Modeling/Top">
                                 <b>Colony level</b>
+
                                 <b>Colony</b>
 
                                 <img
 
                                 <img
 
                                     src="https://static.igem.org/mediawiki/2015/6/6a/KU_Leuven_Wiki_Button_-_Colony_level2.png"
 
                                     src="https://static.igem.org/mediawiki/2015/6/6a/KU_Leuven_Wiki_Button_-_Colony_level2.png"
Line 341: Line 341:
 
                         <div class="subimgm">
 
                         <div class="subimgm">
 
                             <a href="https://2015.igem.org/Team:KU_Leuven/Modeling/Hybrid">
 
                             <a href="https://2015.igem.org/Team:KU_Leuven/Modeling/Hybrid">
                             <b>Hybrid model</b>
+
                             <b>Hybrid</b>
 
                             <img
 
                             <img
 
                                 src="https://static.igem.org/mediawiki/2015/0/02/KU_Leuven_Wiki_Button_-_Hybrid_model2.png"
 
                                 src="https://static.igem.org/mediawiki/2015/0/02/KU_Leuven_Wiki_Button_-_Hybrid_model2.png"
Line 351: Line 351:
 
                         <div class="subtextm">
 
                         <div class="subtextm">
 
                             <a href="https://2015.igem.org/Team:KU_Leuven/Modeling/Hybrid">
 
                             <a href="https://2015.igem.org/Team:KU_Leuven/Modeling/Hybrid">
                                 <p>
+
                                 <p> Our hybrid model merges both colony and internal level to define the cell-cell interactions of our pattern forming cells.
                                    Coming soon
+
                                    <br/>
+
 
                                 </p>
 
                                 </p>
 
                             </a>
 
                             </a>
Line 366: Line 364:
 
                         <div class="subimgm">
 
                         <div class="subimgm">
 
                             <a href="https://2015.igem.org/Team:KU_Leuven/Modeling/Internal">
 
                             <a href="https://2015.igem.org/Team:KU_Leuven/Modeling/Internal">
                             <b>Internal model</b>
+
                             <b>Internal</b>
 
                             <img
 
                             <img
 
                                 src="https://static.igem.org/mediawiki/2015/4/47/KU_Leuven_Wiki_Button_-_Internal_model2.png"
 
                                 src="https://static.igem.org/mediawiki/2015/4/47/KU_Leuven_Wiki_Button_-_Internal_model2.png"
Line 377: Line 375:
 
                             <a href="https://2015.igem.org/Team:KU_Leuven/Modeling/Internal">
 
                             <a href="https://2015.igem.org/Team:KU_Leuven/Modeling/Internal">
 
                                 <p>
 
                                 <p>
                                    Coming soon
+
Our internal model aims to simulate the internal dynamics of every cell with a system of ordinary differential equations.
                                    <br/>
+
 
                                 </p>
 
                                 </p>
 
                             </a>
 
                             </a>
Line 458: Line 455:
 
   <div id="eppendorf">
 
   <div id="eppendorf">
 
       <a href="https://www.eppendorf.com/BE-en/"><img src="https://static.igem.org/mediawiki/2015/9/96/KU_Leuven_Logo_Eppendorf_transparant.png" alt="Eppendorf" width="95%"></a>
 
       <a href="https://www.eppendorf.com/BE-en/"><img src="https://static.igem.org/mediawiki/2015/9/96/KU_Leuven_Logo_Eppendorf_transparant.png" alt="Eppendorf" width="95%"></a>
 +
  </div>
 +
<div id="saillart">
 +
      <a href="http://www.glasatelier-saillart.be/"><img src="https://static.igem.org/mediawiki/2015/c/ce/KU_Leuven_Sponsor_Saillard.png" alt="Glasatelier Saillart" width="95%"></a>
 
   </div>
 
   </div>
 
<div id="kuleuven">
 
<div id="kuleuven">
Line 470: Line 470:
 
       <a><img src="https://static.igem.org/mediawiki/2015/1/15/KUL_Ko-Lo_Instruments_logo_transparant.png" alt="Ko-Lo Instruments" width="95%"></a>
 
       <a><img src="https://static.igem.org/mediawiki/2015/1/15/KUL_Ko-Lo_Instruments_logo_transparant.png" alt="Ko-Lo Instruments" width="95%"></a>
 
     </div>
 
     </div>
<div id="regensys">
 
      <a href="http://regenesys.eu/"><img src="https://static.igem.org/mediawiki/2015/e/eb/KU_Leuven_Logo_Regenesys_Transparant.png" alt="Regenesys" width="95%"></a>
 
  </div>
 
 
</div>
 
</div>
  
Line 479: Line 476:
 
       <a href="https://www.bioke.com/"><img src="https://static.igem.org/mediawiki/2015/e/e1/KUL_Biok%C3%A9_logo_transparant.png" alt="Bioké" width="95%"></a>
 
       <a href="https://www.bioke.com/"><img src="https://static.igem.org/mediawiki/2015/e/e1/KUL_Biok%C3%A9_logo_transparant.png" alt="Bioké" width="95%"></a>
 
   </div>
 
   </div>
 +
<div class="logonormal">
 +
<div id="regensys">
 +
      <a href="http://regenesys.eu/"><img src="https://static.igem.org/mediawiki/2015/e/eb/KU_Leuven_Logo_Regenesys_Transparant.png" alt="Regenesys" width="95%"></a>
 +
  </div>
 +
<div class="whiterow"></div>
 
   <div id="thermofisher">
 
   <div id="thermofisher">
 
       <a href="https://www.fishersci.com/us/en/home.html"><img src="https://static.igem.org/mediawiki/2015/a/aa/KUL_Fischer_Scientific_logo_transparant.png" alt="Thermo Fisher Scientific" width="95%"></a>
 
       <a href="https://www.fishersci.com/us/en/home.html"><img src="https://static.igem.org/mediawiki/2015/a/aa/KUL_Fischer_Scientific_logo_transparant.png" alt="Thermo Fisher Scientific" width="95%"></a>
 
   </div>
 
   </div>
 +
</div>
 
<div id="vwr">
 
<div id="vwr">
 
       <a href="https://be.vwr.com/store/?&_requestid=866148&_DARGS=/store/cms/be.vwr.com/nl_BE/header_20159241139103.jsp.1_AF&_dynSessConf=4047468000326453053&targetURL=/store/%3F%26_requestid%3D866148&lastLanguage=en&/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=&_D%3AcurrentLanguage=+&currentLanguage=en&_D%3AlastLanguage=+&_D%3A/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=+"><img src="https://static.igem.org/mediawiki/2015/8/8d/KU_Leuven_Logo_VWR_transparant_.png" alt="VWR" width="95%"></a>
 
       <a href="https://be.vwr.com/store/?&_requestid=866148&_DARGS=/store/cms/be.vwr.com/nl_BE/header_20159241139103.jsp.1_AF&_dynSessConf=4047468000326453053&targetURL=/store/%3F%26_requestid%3D866148&lastLanguage=en&/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=&_D%3AcurrentLanguage=+&currentLanguage=en&_D%3AlastLanguage=+&_D%3A/vwr/userprofiling/EditPersonalInfoFormHandler.updateLocale=+"><img src="https://static.igem.org/mediawiki/2015/8/8d/KU_Leuven_Logo_VWR_transparant_.png" alt="VWR" width="95%"></a>
Line 498: Line 501:
 
       <a href="https://www.sigmaaldrich.com/belgium-nederlands.html"><img src="https://static.igem.org/mediawiki/2015/4/4b/KUL_Sigma-Aldrich_logo_transparant.png" alt="Sigma-Aldrich" width="95%"></a>
 
       <a href="https://www.sigmaaldrich.com/belgium-nederlands.html"><img src="https://static.igem.org/mediawiki/2015/4/4b/KUL_Sigma-Aldrich_logo_transparant.png" alt="Sigma-Aldrich" width="95%"></a>
 
     </div>
 
     </div>
     <div id="egilabo">
+
    <div class="whiterow"></div>
 +
     <div id="egilab">
 
       <a href="http://www.egilabo.be/"><img src="https://static.igem.org/mediawiki/2015/e/e9/KUL_Egilabo_logo_transparant.png" alt="Egilabo" width="95%"></a>
 
       <a href="http://www.egilabo.be/"><img src="https://static.igem.org/mediawiki/2015/e/e9/KUL_Egilabo_logo_transparant.png" alt="Egilabo" width="95%"></a>
 +
    </div>
 +
    <div class="whiterow"></div>
 +
    <div id="novolab">
 +
      <a href="https://www.novolab.be/"><img src="https://static.igem.org/mediawiki/2015/4/4c/KU_Leuven_Novalab.png" alt="Novolab" height="95%"></a>
 
     </div>
 
     </div>
 
   </div>   
 
   </div>   

Revision as of 15:29, 17 September 2015

Toulouse FBA Model

We cooperated with Toulouse on the modeling. Here we describe the Flux-Balance-Analysis the Toulouse team generously performed for us.

Flux balance analysis is a widely used approach for studying the flow trough metabolic networks. In our case we are interested in the Leucine and AHL production rates of the type A cells and their effect on the growth rate of the bacteria. This is very important because if cell A has a big metabolic burden and a very low growth rate, cell B would overgrow it and our pattern formation system would not work. To check the effect of our system on the growth rate iGEM Toulouse ran a FB analysis. When a FBA is set up. The metabolic network of the organism in question is represented as a matrix $\mathbf{S}$ of size $m \times n$ is filled with the stoichiometric constants of each reaction. Each of the $m$ matrix rows represents a unique compound. Similarly each of the n columns represents one unique reaction. Next a vector $\mathbf{v}$ of length $n$ is defined which contains the flux trough each reaction. Finally the vector $\mathbf{x}$ is defined to contain the concentrations of each metabolite. The steady state solution in the insteresting one therefore: $$ \frac{dx}{dt} = \mathbf{Sv} = 0 $$ Which is the nullspace of $\mathbf{S}$. In this set of solutions a maximal or minimal value can be identified using numerical optimization. In order to run the optimization algorithm a cost function has to be defined. $$ f(x) = \mathbf{c}^{T}\mathbf{v} $$ The equation above shows such a cost function. Here the vector $\mathbf{c}$ represents a weight vector. In practice it is used to choose the metabolite of interested by setting the corresponding entry to one and all others to zero. From an optimization perspective the equation $\mathbf{Sv} = 0$ represents constraints, which guide the numerical solver to the right solution.
In our case the $\mathbf{S}$ matrix comes from the in silico E. Coli model K12MG1665. The model is contained in an XML file. We told the Toulouse modelers our two reaction of interest: $$ \text{glutamate} + \text{aKIC} \rightarrow \text{aKG} + \text{Leucine} $$ This reaction is interesting as Leucine serves as repellent in our scheme. The second reaction of interest is: $$ \text{acylACP} + \text{SAM} \rightarrow \text{ACP} + \text{MTA} + \text{AHL} $$ This reaction is important because AHL serves as the key to the motility system of cell B. Without AHL, cell B is unable to move away and form patterns. Given this information the Toulouse team was able to locate the reactions of interest in the XML model file, and simulate the cell metabolism. The results are:



AHL and Biomass production.

Figure 1
AHL and Biomass production. Click to enlarge


AHL and Biomass production.

Figure 2
AHL and Biomass production with maximal Leucine production rate.. Click to enlarge

AHL and Biomass production.

Figure 3
Leucine and Biomass production. Click to enlarge

AHL and Biomass production.

Figure 4
Leucine and Biomass production at AHL maximum. Click to enlarge

All of the graphs shown above are in $mmol \cdot gDW^{-1} \cdot h^{-1}$. The maximum value for AHL is:

$$ 150.71391 mmol \cdot gDW^{-1} \cdot h^{-1} $$

Similarly for Leucine toulouse found:

$$ 528.17774 mmol \cdot gDW^{-1} \cdot h^{-1}$$

In generally it follows from the analysis that the more AHL or Leucine is produced the smaller the Biomass output becomes. It also shows that Cell A can not operate at the maximum production rate, because the growth rate would then be so slow that Cell B would overgrow it. This is something to keep in mind when we choose our promoters for the system.



Contact

Address: Celestijnenlaan 200G room 00.08 - 3001 Heverlee
Telephone: +32(0)16 32 73 19
Email: igem@chem.kuleuven.be