Difference between revisions of "Team:Stanford-Brown/Cellulose"

Line 117: Line 117:
 
</div>
 
</div>
  
<p> Cellulose is a polysaccharide made up of the monomer, B-D glucose, linked by (1->4) glycosidic bond [1]. It is an important structural component of the plant cell walls and has been used in various textile applications such as paper production [2]. Cellulose is also produced by a Gram-negative bacterium, Gluconacetobacter hansenii, which secretes highly-crystalline cellulose [3]. Because of the few requirements needed to produce bacterial cellulose, G. hansenii is seen as a model organism for the study of cellulose synthesis in plants [3]. We grew a large culture of G. hansenii in growth medium to produce large batch of bacterial cellulose. After retrieving the cellulose from the medium, we used a paper-making protocol to turn them into cellulose sheets (see protocol below). The cellulose would be an important substrate for our biOrigami when combined with the spores to make bioHYDRAS (link to bioHYDRA page). We can use CBDs to attach the spores to the cellulose sheet. This can be accomplished by using a DNA linker connecting the CBD sequence to a protein expressed on the spore coat, Cotz. Since Cotz localizes to the spore coat, the hybrid Cotz-CBD will allow the spores to attach to the sheet. Furthermore, we can expand on the unique properties of this CBD to allow attachment of any protein onto a cellulose surface. We call our CBD system uCBD to note its universal protein attachment abilities. <br>  
+
<p> Cellulose is a polysaccharide made up of the monomer, B-D glucose, linked by (1->4) glycosidic bond [1]. It is an important structural component of the plant cell walls and has been used in various textile applications such as paper production [2]. Cellulose is also produced by a Gram-negative bacterium, <i>Gluconacetobacter hansenii</i>, which secretes highly-crystalline cellulose [3]. Because of the few requirements needed to produce bacterial cellulose, <i> G. hansenii </i> is seen as a model organism for the study of cellulose synthesis in plants [3]. We grew a large culture of <i> G. hansenii </i> in growth medium to produce large batch of bacterial cellulose. After retrieving the cellulose from the medium, we used a paper-making protocol to turn them into cellulose sheets (see protocol below). The cellulose would be an important substrate for our biOrigami when combined with the spores to make bioHYDRAS (link to bioHYDRA page). We can use CBDs to attach the spores to the cellulose sheet. This can be accomplished by using a DNA linker connecting the CBD sequence to a protein expressed on the spore coat, Cotz. Since Cotz localizes to the spore coat, the hybrid Cotz-CBD will allow the spores to attach to the sheet. Furthermore, we can expand on the unique properties of this CBD to allow attachment of any protein onto a cellulose surface. We call our CBD system uCBD to note its universal protein attachment abilities. <br>  
  
The system is inspired by the previous 2014 Stanford-Brown-Spelman iGEM team (link to page); however, it has several improvements. We used the cellulosomal-scaffolding protein A (cipA) of Clostridium thermocellum as our CBD. We chose cipA because of its high cellulose binding affinity (tested by the Imperial 2014 IGEM team) and improved on the Imperial cipA by removing the illegal EcoRI site within the gene. CipA is attached to a monomeric streptavidin instead of the wild-type tetramer streptavidin to prevent the chance of protein aggregation, which can inhibit protein function [4]. We thus, sacrifice a small decrease in binding affinity from the monomeric streptavidin for an increase in functional activity of the overall hybrid protein. Together, the cipA + monomeric streptavidin gene made up the cellulose attachment part of our uCBD sytem (Part I). The second part of the system involves molecular cloning any protein of interest onto the bifunctional ligase/repressor (birA) protein attached to an acceptor peptide. BirA is found in e. coli and it catalyzes attachment of biotin onto the biotin acceptor peptide such as the Avitag [5]. Because the acceptor peptide is connected to the protein of interest, this protein can be extracted and purified from the cells and can then attach to Part I via streptavidin-biotin interaction. </p>
+
The system is inspired by the previous 2014 Stanford-Brown-Spelman iGEM team (link to page); however, it has several improvements. We used the cellulosomal-scaffolding protein A (cipA) of <i> Clostridium thermocellum </i> as our CBD. We chose cipA because of its high cellulose binding affinity (tested by the Imperial 2014 IGEM team) and improved on the Imperial cipA by removing the illegal EcoRI site within the gene. CipA is attached to a monomeric streptavidin instead of the wild-type tetramer streptavidin to prevent the chance of protein aggregation, which can inhibit protein function [4]. We thus, sacrifice a small decrease in binding affinity from the monomeric streptavidin for an increase in functional activity of the overall hybrid protein. Together, the cipA + monomeric streptavidin gene made up the cellulose attachment part of our uCBD sytem (Part I). The second part of the system involves molecular cloning any protein of interest onto the bifunctional ligase/repressor (birA) protein attached to an acceptor peptide. BirA is found in <i> E. coli </i> and it catalyzes attachment of biotin onto the biotin acceptor peptide such as the Avitag [5]. Because the acceptor peptide is connected to the protein of interest, this protein can be extracted and purified from the cells and can then attach to Part I via streptavidin-biotin interaction. </p>
  
  

Revision as of 22:21, 17 September 2015

SB iGEM 2015

Welcome to Cellulose Write catchy subtitle description

Abstract

We used the acetic acid bacterium Gluconacetobacter hansenii to produce bacterial cellulose. Because of its fibrous, tough, water-insoluble properties [1] we used bacterial cellulose as a substrate for biOrigami. After making the cellulose, we refine it into a flat, paper-like sheet using a DIY paper-making protocol. One unique aspect of cellulose is the existence of a class of proteins known as cellulose binding domains (CBDs) that can attach to a cellulose sheet. We design a universal CBD (uCBD) that allows for the attachment of any protein onto a cellulose sheet. Using our uCBD device, we can extend our self-folding system to serve additional functions, such a sensor for the detection of inorganic molecules, or binding enzymes to catalyze reactions on the surface of the sheet. We have contributed the BioBricks of our uCBD system to the registry. See our biobricks below:

See our BioBricks
Generic placeholder image

Introduction

We use G. hansenii to produce cellulose as an alternative substrate for our biOrigami. Combine with cellulose binding domain and spore coat protein, cotZ, we can attach spores onto the cellulose surface for self-folding.

Generic placeholder image

Cellulose is a polysaccharide made up of the monomer, B-D glucose, linked by (1->4) glycosidic bond [1]. It is an important structural component of the plant cell walls and has been used in various textile applications such as paper production [2]. Cellulose is also produced by a Gram-negative bacterium, Gluconacetobacter hansenii, which secretes highly-crystalline cellulose [3]. Because of the few requirements needed to produce bacterial cellulose, G. hansenii is seen as a model organism for the study of cellulose synthesis in plants [3]. We grew a large culture of G. hansenii in growth medium to produce large batch of bacterial cellulose. After retrieving the cellulose from the medium, we used a paper-making protocol to turn them into cellulose sheets (see protocol below). The cellulose would be an important substrate for our biOrigami when combined with the spores to make bioHYDRAS (link to bioHYDRA page). We can use CBDs to attach the spores to the cellulose sheet. This can be accomplished by using a DNA linker connecting the CBD sequence to a protein expressed on the spore coat, Cotz. Since Cotz localizes to the spore coat, the hybrid Cotz-CBD will allow the spores to attach to the sheet. Furthermore, we can expand on the unique properties of this CBD to allow attachment of any protein onto a cellulose surface. We call our CBD system uCBD to note its universal protein attachment abilities.
The system is inspired by the previous 2014 Stanford-Brown-Spelman iGEM team (link to page); however, it has several improvements. We used the cellulosomal-scaffolding protein A (cipA) of Clostridium thermocellum as our CBD. We chose cipA because of its high cellulose binding affinity (tested by the Imperial 2014 IGEM team) and improved on the Imperial cipA by removing the illegal EcoRI site within the gene. CipA is attached to a monomeric streptavidin instead of the wild-type tetramer streptavidin to prevent the chance of protein aggregation, which can inhibit protein function [4]. We thus, sacrifice a small decrease in binding affinity from the monomeric streptavidin for an increase in functional activity of the overall hybrid protein. Together, the cipA + monomeric streptavidin gene made up the cellulose attachment part of our uCBD sytem (Part I). The second part of the system involves molecular cloning any protein of interest onto the bifunctional ligase/repressor (birA) protein attached to an acceptor peptide. BirA is found in E. coli and it catalyzes attachment of biotin onto the biotin acceptor peptide such as the Avitag [5]. Because the acceptor peptide is connected to the protein of interest, this protein can be extracted and purified from the cells and can then attach to Part I via streptavidin-biotin interaction.

Experiment Engineering E. coli to produce polystyrene

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

Generic placeholder image

Donec tincidunt aliquet justo, sit amet mollis purus varius ac. Quisque ac sapien eu ante convallis cursus congue vel odio. Sed efficitur sapien ut eros sodales ornare. Vestibulum pellentesque lorem sed nulla interdum, non tincidunt velit sagittis. Vestibulum cursus, enim eu porta euismod, enim lectus facilisis diam, at sodales metus ligula sit amet eros. Sed ullamcorper, mauris nec mollis pretium, justo ligula dapibus nulla, non elementum nisl libero ut elit. Proin mi urna, finibus at scelerisque quis, porttitor at mauris. Nulla laoreet venenatis cursus. Vivamus et pellentesque quam, eget malesuada ex. Quisque eu massa ligula. Nam interdum dui sed laoreet efficitur. Aliquam sed vulputate orci. Pellentesque sed sollicitudin lectus. Vivamus nec tortor risus. Vestibulum malesuada feugiat lorem a dignissim. In diam mauris, venenatis at vulputate eget, venenatis sit amet metus. Suspendisse ut mi in ipsum sagittis malesuada at nec erat. Etiam volutpat risus quis nisi hendrerit porttitor vel eu tortor. Donec venenatis, risus sit amet ullamcorper scelerisque, tellus erat consequat nibh, vel dictum velit augue id leo. In eleifend tristique ipsum sed dignissim. Duis mattis, ipsum nec aliquet varius, turpis orci tempus nulla, in sodales libero massa at diam. Nulla maximus eros sed venenatis congue. Phasellus diam nunc, ullamcorper vitae tempor eget, sagittis eu odio. Praesent a mauris porttitor, mattis sem a, sodales massa. Proin et justo lectus. Proin varius magna ac leo ullamcorper accumsan. Proin id diam eget dolor vulputate mattis. Suspendisse pellentesque, nunc sit amet blandit feugiat, risus eros egestas massa, nec condimentum ante sapien ac velit. Vivamus efficitur justo dolor, at gravida lorem venenatis at. Aenean at ligula sapien. Mauris eget eleifend justo, eget faucibus ante. Ut mattis ante vitae dignissim maximus. Integer feugiat arcu purus, a viverra dui elementum vitae. Phasellus mattis porttitor iaculis. In eu nisi eu augue lacinia fringilla venenatis at nunc. Nam est erat, hendrerit ac dignissim sed, mollis eu eros. Morbi vel egestas dui, consectetur posuere nisi. Aliquam vitae tortor vulputate, fringilla est vel, faucibus diam. Suspendisse potenti. Donec sed commodo nulla. Duis feugiat, diam eu pulvinar rhoncus, arcu erat pretium orci, ut porta diam elit eu mi. Etiam eros massa, egestas eu mattis id, hendrerit at ligula. Duis placerat felis nec risus volutpat lobortis. Sed elementum, dolor non feugiat placerat, libero sapien pharetra diam, sed faucibus est ex tristique sem. Vivamus rutrum libero eget mollis sodales. Pellentesque vel scelerisque felis, a imperdiet erat. Fusce quis nisl magna. Sed non libero ultrices sapien hendrerit suscipit aliquet convallis leo. Quisque nec aliquam libero, in commodo ex. In eget nulla consequat, commodo quam id, hendrerit velit. Vestibulum non interdum enim. Ut elit justo, suscipit vel pretium vitae, rutrum sed dui. Donec vehicula sit amet ex ac finibus. Donec ultrices tellus et laoreet dictum.

Data and Results Optimizing the production of biological PHA

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

Generic placeholder image

Donec tincidunt aliquet justo, sit amet mollis purus varius ac. Quisque ac sapien eu ante convallis cursus congue vel odio. Sed efficitur sapien ut eros sodales ornare. Vestibulum pellentesque lorem sed nulla interdum, non tincidunt velit sagittis. Vestibulum cursus, enim eu porta euismod, enim lectus facilisis diam, at sodales metus ligula sit amet eros. Sed ullamcorper, mauris nec mollis pretium, justo ligula dapibus nulla, non elementum nisl libero ut elit. Proin mi urna, finibus at scelerisque quis, porttitor at mauris. Nulla laoreet venenatis cursus. Vivamus et pellentesque quam, eget malesuada ex. Quisque eu massa ligula. Nam interdum dui sed laoreet efficitur. Aliquam sed vulputate orci. Pellentesque sed sollicitudin lectus. Vivamus nec tortor risus. Vestibulum malesuada feugiat lorem a dignissim. In diam mauris, venenatis at vulputate eget, venenatis sit amet metus. Suspendisse ut mi in ipsum sagittis malesuada at nec erat. Etiam volutpat risus quis nisi hendrerit porttitor vel eu tortor. Donec venenatis, risus sit amet ullamcorper scelerisque, tellus erat consequat nibh, vel dictum velit augue id leo. In eleifend tristique ipsum sed dignissim. Duis mattis, ipsum nec aliquet varius, turpis orci tempus nulla, in sodales libero massa at diam. Nulla maximus eros sed venenatis congue. Phasellus diam nunc, ullamcorper vitae tempor eget, sagittis eu odio. Praesent a mauris porttitor, mattis sem a, sodales massa. Proin et justo lectus. Proin varius magna ac leo ullamcorper accumsan. Proin id diam eget dolor vulputate mattis. Suspendisse pellentesque, nunc sit amet blandit feugiat, risus eros egestas massa, nec condimentum ante sapien ac velit. Vivamus efficitur justo dolor, at gravida lorem venenatis at. Aenean at ligula sapien. Mauris eget eleifend justo, eget faucibus ante. Ut mattis ante vitae dignissim maximus. Integer feugiat arcu purus, a viverra dui elementum vitae. Phasellus mattis porttitor iaculis. In eu nisi eu augue lacinia fringilla venenatis at nunc. Nam est erat, hendrerit ac dignissim sed, mollis eu eros. Morbi vel egestas dui, consectetur posuere nisi. Aliquam vitae tortor vulputate, fringilla est vel, faucibus diam. Suspendisse potenti. Donec sed commodo nulla. Duis feugiat, diam eu pulvinar rhoncus, arcu erat pretium orci, ut porta diam elit eu mi. Etiam eros massa, egestas eu mattis id, hendrerit at ligula. Duis placerat felis nec risus volutpat lobortis. Sed elementum, dolor non feugiat placerat, libero sapien pharetra diam, sed faucibus est ex tristique sem. Vivamus rutrum libero eget mollis sodales. Pellentesque vel scelerisque felis, a imperdiet erat. Fusce quis nisl magna. Sed non libero ultrices sapien hendrerit suscipit aliquet convallis leo. Quisque nec aliquam libero, in commodo ex. In eget nulla consequat, commodo quam id, hendrerit velit. Vestibulum non interdum enim. Ut elit justo, suscipit vel pretium vitae, rutrum sed dui. Donec vehicula sit amet ex ac finibus. Donec ultrices tellus et laoreet dictum.

See our Picture Gallery!

Protocols

Vestibulum nec nisl eu ex ullamcorper mattis ac vel tortor.

Duis nec nibh non nisl tristique condimentum quis eu leo.

Sed venenatis massa in tortor gravida dictum.

Nam sollicitudin enim ac egestas fermentum. Suspendisse tempor urna vel mollis mollis. Proin ac mauris facilisis sapien maximus suscipit nec eget felis. Fusce ac urna sit amet nunc condimentum gravida. Aenean commodo nunc et tempus egestas. Suspendisse cursus quam placerat, vestibulum nunc non, imperdiet felis. Curabitur et erat non justo eleifend commodo. In sit amet sem vitae eros placerat facilisis. Quisque eget ligula vel tellus fermentum vestibulum. Curabitur eu ligula non lorem pulvinar posuere ac commodo ante. Sed convallis quam ut risus dignissim, nec pellentesque risus malesuada. Vestibulum vel sem eu tortor ornare consequat ac eget ligula. Suspendisse eu lacus ut nisi aliquet mollis id nec eros. Integer vulputate sem sed massa porta, eget dapibus odio pellentesque. Morbi sit amet lacus quis urna mattis elementum.

See our Lab Notebook!

References

Vestibulum nec nisl eu ex ullamcorper mattis ac vel tortor. Duis nec nibh non nisl tristique condimentum quis eu leo. Sed venenatis massa in tortor gravida dictum. Nam sollicitudin enim ac egestas fermentum. Suspendisse tempor urna vel mollis mollis. Proin ac mauris facilisis sapien maximus suscipit nec eget felis. Fusce ac urna sit amet nunc condimentum gravida. Aenean commodo nunc et tempus egestas. Suspendisse cursus quam placerat, vestibulum nunc non, imperdiet felis. Curabitur et erat non justo eleifend commodo. In sit amet sem vitae eros placerat facilisis. Quisque eget ligula vel tellus fermentum vestibulum.p>


Copyright © 2015 Stanford-Brown iGEM Team