Difference between revisions of "Team:Stanford-Brown/Modeling"

Line 16: Line 16:
 
</head>
 
</head>
  
    <div class="jumbotron oridomiLeft">
+
<div class="jumbotron oridomiLeft">
      <div class="container">
+
  <div class="container">
        <h1>Modeling<small> mathematical models are below<small></h1>
+
    <h1>Modeling<small> an in silico alternative<small></h1>
      </div><!--end container-->
+
  </div><!--end container-->
    </div><!-- end jumbotron-->
+
</div><!-- end jumbotron-->
  
    <!-- START THE FEATURETTES -->
+
<!-- START THE FEATURETTES -->
  
    <div class="container">
+
<div class="container">
  
    <div class="row featurette">
+
  <h2>Why Model?</h2>
      <a href="https://2015.igem.org/Stanford-Brown/Vision">
+
        <div class="col-md-7 well" id="be1">
+
          <h2 class="featurette-heading">Our Vision<span class="small"> to create biological origami aka BiOrigami</span></h2>
+
          <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
+
        </div>
+
      </a>
+
      <div class="col-md-5">
+
        <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
+
      </div>
+
    </div>
+
  
 +
  <p>Experimentation makes up the backbone of any scientific discipline, and synthetic biology is no exception. It is only through experimental analysis that we can understand, test, and refine our biological creations in a rigorous manner. One might be tempted to ask why computation and simulation need even make appearances on our stage. We shall attempt to say a few words in the defense of mathematical modeling.</p>
  
    <div class="row featurette">
+
  <p>To the question “Why model?”, Joshua Epstein, the 2008 recipient of the NIH Director’s Pioneer Award, offers a simple retort: “You are a modeler,” by which he means to say that we all are constantly running implicit models inside our head often without realizing it. When a PCR yields unexpected results, for example, we may call upon an internal model of DNA replication in order to assess the points at which reality may have diverged from expectation: perhaps the primers bound to the template DNA non-selectively or maybe our chosen annealing temperature was too high. Whenever scientists generate hypotheses based on some internal picture in their head, those scientists are practicing the age old tradition of modeling.</p>
      <div class="col-md-7 col-md-push-5 well" id="be2">
+
        <h2 class="featurette-heading">But how? <span class="small"> with the following projects below</span></h2>
+
        <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
+
      </div>
+
      <div class="col-md-5 col-md-pull-7">
+
        <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
+
      </div>
+
    </div>
+
  
    <p>Go write all your modeling stuff here</p>
+
  <p>The question then becomes, “Why use mathematical models?” Our PCR example from above offers an answer to this question as well. In determining whether nonspecificity lay at the root of our faulty PCR, we may resort to a read-alignment program that can computationally predict potential primer binding sites. And it is standard practice to use an annealing-temperature calculator before designing a set of PCR cycles. The existence and widespread use of tools such as these illustrates the inadequacy of our minds in solving certain problems without aid as well as the consequent need for explicit quantitative models and computing machinery.</p>
  
 +
  <p>In the case of our project, we used computational tools to help model the molecular dynamics of two of our biosynthetic reactions. These were instances where human intuition alone could not reliably answer a question that interested us, namely, which enzyme (PAL or FDC) or substrate (CoA or Acetate) exerts greater control on the flux or amount of product in our specified pathway? It is this question that we shall explore below.</p>
  
    <div class="row featurette">
+
 
       <div class="col-md-7 well" id="be3">
+
  <div class="row featurette">
         <h2 class="featurette-heading">Polystyrene <span class="small">Engineering E. coli to produce polystyrene</span></h2>
+
    <a href="https://2015.igem.org/Stanford-Brown/Vision">
 +
       <div class="col-md-7 well" id="be1">
 +
         <h2 class="featurette-heading">Our Vision<span class="small"> to create biological origami aka BiOrigami</span></h2>
 
         <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
 
         <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
 
       </div>
 
       </div>
      <div class="col-md-5">
+
    </a>
        <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
+
    <div class="col-md-5">
      </div>
+
      <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
 
     </div>
 
     </div>
 +
  </div>
  
  
    <div class="row featurette">
+
  <div class="row featurette">
      <div class="col-md-7 col-md-push-5 well" id="be4">
+
    <div class="col-md-7 col-md-push-5 well" id="be2">
        <h2 class="featurette-heading">Polyhydroxyalkanoates <span class="small">Optimizing the production of biological PHA</span></h2>
+
      <h2 class="featurette-heading">But how? <span class="small"> with the following projects below</span></h2>
        <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
+
      <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
      </div>
+
      <div class="col-md-5 col-md-pull-7">
+
        <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
+
      </div>
+
 
     </div>
 
     </div>
 +
    <div class="col-md-5 col-md-pull-7">
 +
      <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
 +
    </div>
 +
  </div>
  
 +
  <p>Go write all your modeling stuff here</p>
  
    <div class="row featurette">
+
 
    <div class="col-md-7 well" id="be5">  
+
  <div class="row featurette">
       <h2 class="featurette-heading">C.A.S.H.<span class="small"> Cellulose Associated Spore HYDRAS, or a biological contractile mechanism</span></h2>
+
    <div class="col-md-7 well" id="be3">
       <p class="lead">Based on work done by Chen et al. at Columbia university, we sought to employ the contractile properties of bacterial spores to use as a contractile mechanism for biOrigami.</p>
+
       <h2 class="featurette-heading">Polystyrene <span class="small">Engineering E. coli to produce polystyrene</span></h2>
     </div><!-- end well -->
+
       <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
 +
     </div>
 
     <div class="col-md-5">
 
     <div class="col-md-5">
 
       <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
 
       <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
Line 86: Line 75:
  
 
   <div class="row featurette">
 
   <div class="row featurette">
     <div class="col-md-7 col-md-push-5 well" id="be6">  
+
     <div class="col-md-7 col-md-push-5 well" id="be4">
 
+
       <h2 class="featurette-heading">Polyhydroxyalkanoates <span class="small">Optimizing the production of biological PHA</span></h2>
       <h2 class="featurette-heading">CRATER <span class="small">Crisper Assited Transformation Efficient Reaction</span></h2>
+
 
       <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
 
       <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
 
     </div>
 
     </div>
 
     <div class="col-md-5 col-md-pull-7">
 
     <div class="col-md-5 col-md-pull-7">
       <img class="featurette-image img-responsive center-block img-rounded" data-src="http://lorempixel.com/300/300" alt="Generic placeholder image">
+
       <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
 
     </div>
 
     </div>
 
   </div>
 
   </div>
 +
 +
 +
  <div class="row featurette">
 +
  <div class="col-md-7 well" id="be5">
 +
    <h2 class="featurette-heading">C.A.S.H.<span class="small"> Cellulose Associated Spore HYDRAS, or a biological contractile mechanism</span></h2>
 +
    <p class="lead">Based on work done by Chen et al. at Columbia university, we sought to employ the contractile properties of bacterial spores to use as a contractile mechanism for biOrigami.</p>
 +
  </div><!-- end well -->
 +
  <div class="col-md-5">
 +
    <img class="featurette-image img-responsive center-block img-rounded" src="http://lorempixel.com/300/300" alt="Generic placeholder image">
 +
  </div>
 +
</div>
 +
 +
 +
<div class="row featurette">
 +
  <div class="col-md-7 col-md-push-5 well" id="be6"> 
 +
 +
    <h2 class="featurette-heading">CRATER <span class="small">Crisper Assited Transformation Efficient Reaction</span></h2>
 +
    <p class="lead">Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.</p>
 +
  </div>
 +
  <div class="col-md-5 col-md-pull-7">
 +
    <img class="featurette-image img-responsive center-block img-rounded" data-src="http://lorempixel.com/300/300" alt="Generic placeholder image">
 +
  </div>
 +
</div>
  
 
</div><!-- /.container -->
 
</div><!-- /.container -->

Revision as of 02:49, 18 September 2015

Notebooks

Modeling an in silico alternative

Why Model?

Experimentation makes up the backbone of any scientific discipline, and synthetic biology is no exception. It is only through experimental analysis that we can understand, test, and refine our biological creations in a rigorous manner. One might be tempted to ask why computation and simulation need even make appearances on our stage. We shall attempt to say a few words in the defense of mathematical modeling.

To the question “Why model?”, Joshua Epstein, the 2008 recipient of the NIH Director’s Pioneer Award, offers a simple retort: “You are a modeler,” by which he means to say that we all are constantly running implicit models inside our head often without realizing it. When a PCR yields unexpected results, for example, we may call upon an internal model of DNA replication in order to assess the points at which reality may have diverged from expectation: perhaps the primers bound to the template DNA non-selectively or maybe our chosen annealing temperature was too high. Whenever scientists generate hypotheses based on some internal picture in their head, those scientists are practicing the age old tradition of modeling.

The question then becomes, “Why use mathematical models?” Our PCR example from above offers an answer to this question as well. In determining whether nonspecificity lay at the root of our faulty PCR, we may resort to a read-alignment program that can computationally predict potential primer binding sites. And it is standard practice to use an annealing-temperature calculator before designing a set of PCR cycles. The existence and widespread use of tools such as these illustrates the inadequacy of our minds in solving certain problems without aid as well as the consequent need for explicit quantitative models and computing machinery.

In the case of our project, we used computational tools to help model the molecular dynamics of two of our biosynthetic reactions. These were instances where human intuition alone could not reliably answer a question that interested us, namely, which enzyme (PAL or FDC) or substrate (CoA or Acetate) exerts greater control on the flux or amount of product in our specified pathway? It is this question that we shall explore below.

But how? with the following projects below

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

Generic placeholder image

Go write all your modeling stuff here

Polystyrene Engineering E. coli to produce polystyrene

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

Generic placeholder image

Polyhydroxyalkanoates Optimizing the production of biological PHA

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

Generic placeholder image

C.A.S.H. Cellulose Associated Spore HYDRAS, or a biological contractile mechanism

Based on work done by Chen et al. at Columbia university, we sought to employ the contractile properties of bacterial spores to use as a contractile mechanism for biOrigami.

Generic placeholder image

CRATER Crisper Assited Transformation Efficient Reaction

Donec ullamcorper nulla non metus auctor fringilla. Vestibulum id ligula porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque nisl consectetur. Fusce dapibus, tellus ac cursus commodo.

Generic placeholder image

Copyright © 2015 Stanford-Brown iGEM Team