Difference between revisions of "Team:Freiburg/Results/Diagnostics"
Line 54: | Line 54: | ||
<p> | <p> | ||
− | Before we put our DiaCHIP to a final test by measuring with actual human blood serum, we wanted to make sure, we are able to detect antibodies out of such a complex solution. Luckily | + | Before we put our DiaCHIP to a final test by measuring with actual human blood serum, we wanted to make sure, we are able to detect antibodies out of such a complex solution. Luckily we obtained 20 year old blood serum from a rabbit that has been immunized to GFP and from a non-immunized rabbit. We immobilized purified GFP next to a positive and a negative control and performed two measurements.<br> |
+ | As a positive control for this experiment, we spotted bBSA whose specific binding partner is streptavidin. To make sure that no unspecific binding events are responsible for the result, we spotted the DiaMIX without DNA template onto the surface as a negative control. | ||
+ | One time the DiaCHIP was flushed with serum derived from the non-immunized rabbit and one time with the serum of the immunized rabbit. Figure 1 and 2 show the quotient pictures of these two measurements and figure 3 and 4 the corresponding binding curves. <br> | ||
+ | Comparison of the quotient pictures shows that there occured an increase in layer thickness at the positive control spot and the spot of interest. This indicates that anti-GFP antibodies bind to cell-free expressed GFP as well as spreptavidin binds to bBSA. At the same time, no changes are observed at the negative control spot indicating that the binding of anti-GFP occured specifically to GFP. | ||
+ | The respective binding curves visualize the relative light intensity at certain spots over the course of the experiment. The increase of relative light intensity when the DiaCHIP is flushed with anti-GFP is due to their binding to GFP. Such an increase can be seen for the positive control spot and the spot of interest, but not for the negative control spot therby indicating specific binding of anti-GFP to cell-free expressed GFP. <br> | ||
+ | Our result demonstrates, that we can use the DiaCHIP to specifically detect anti-GFP antibodies in rabbit blood serum. Additionally, we showed that the use of a cell-free expression system for production of the protein array is suitable. At least cell-free expressed GFP exhibits antibody binding properties comparable to conventionally purified GFP. This experiment also shows that target proteins can be immobilized out of a complex mixture as the DiaMIX in an amount that is sufficient for antibody detection using our Ni-NTA surface. | ||
</p> | </p> | ||
Revision as of 10:18, 18 September 2015
Diagnostics results
The following section summarizes the most interesting results we obtained this summer establishing our diagnostic tool. On our way to detecting anti-tetanus antibodies in human blood serum we achieved many other results in the field of diagnosis. In addition to the detection of anti-tetanus antibodies, we could identify anti-GFP antibodies with our own cell-free expressed GFP immobilized on our specific surface (Essential Results). Before we achieved these major results we demonstrated that our device is indeed capable of detecting specific antigen-antibody binding.
Specific Detection of anti-GFP in rabbit serum
Before we put our DiaCHIP to a final test by measuring with actual human blood serum, we wanted to make sure, we are able to detect antibodies out of such a complex solution. Luckily we obtained 20 year old blood serum from a rabbit that has been immunized to GFP and from a non-immunized rabbit. We immobilized purified GFP next to a positive and a negative control and performed two measurements.
As a positive control for this experiment, we spotted bBSA whose specific binding partner is streptavidin. To make sure that no unspecific binding events are responsible for the result, we spotted the DiaMIX without DNA template onto the surface as a negative control.
One time the DiaCHIP was flushed with serum derived from the non-immunized rabbit and one time with the serum of the immunized rabbit. Figure 1 and 2 show the quotient pictures of these two measurements and figure 3 and 4 the corresponding binding curves.
Comparison of the quotient pictures shows that there occured an increase in layer thickness at the positive control spot and the spot of interest. This indicates that anti-GFP antibodies bind to cell-free expressed GFP as well as spreptavidin binds to bBSA. At the same time, no changes are observed at the negative control spot indicating that the binding of anti-GFP occured specifically to GFP.
The respective binding curves visualize the relative light intensity at certain spots over the course of the experiment. The increase of relative light intensity when the DiaCHIP is flushed with anti-GFP is due to their binding to GFP. Such an increase can be seen for the positive control spot and the spot of interest, but not for the negative control spot therby indicating specific binding of anti-GFP to cell-free expressed GFP.
Our result demonstrates, that we can use the DiaCHIP to specifically detect anti-GFP antibodies in rabbit blood serum. Additionally, we showed that the use of a cell-free expression system for production of the protein array is suitable. At least cell-free expressed GFP exhibits antibody binding properties comparable to conventionally purified GFP. This experiment also shows that target proteins can be immobilized out of a complex mixture as the DiaMIX in an amount that is sufficient for antibody detection using our Ni-NTA surface.
Detection of Salmonella Typhimurium Single Chain Antibodies
We obtained the sequence for an immunogenic Salmonella Typhimurium antigen and a corresponding anti-S. Typhimurium antibody from Prof. Dr. Hust's laboratory. Both His-tagged proteins were successfully expressed in E. coli and spotted on a PDITC surface. In an iRIf measurement we analyzed the binding between S. Typhimurium antigen and antibody (figure 5). The measurement was a great success. When the S. Typhimurium antibody was flushed over the chip a distinct shift in the binding curve for the S. Typhimurium antigen spot was detectable, whereas the negative control showed no binding event (figure 6). Moreover, the obtained iRIF result was validated with a standardized method. The purified antigen was analyzed by a 12.5% SDS-PAGE. Afterwards a Western Blot was performed using the self-purified antibody. This antibody is genetically fused to a c-Myc tag that is not present in the antigen. Therefore, we used an anti-c-Myc antibody derived from goat as secondary antibody. For detection via chemiluminescence an anti-goat HRP was used. The conventional method confirmed the binding of the anti-S. Typhimurium antibody to the corresponding antigen (figure 7 (B)). The presence of both proteins was additionally validated by Western Blot with an anti-His conjugated antibody (figure 7 (A)). With this measurement we demonstrated that our system is able to detect a specific antigen-antibody binding.
Specific Detection of Multiple Binding Events
Another important experiment on our way to the establishment of the DiaCHIP was the immobilization of three proteins on one single slide (GFP, a rabbit- and a mouse-derived antibody). In this experiment the slide was sequentially flushed with three different antibodies, each specifically binding to one of the immobilized proteins. In three different outputs, dependent on the antibody, we received a highly specific binding at each spot. The corresponding binding curve shows the changes in relative light intensity at each spot. The occuring binding events are specific, except a slight cross-reactivity of the anti-mouse antibody (figure 8). Quotient pictures additionally visualize distinct binding of the respective antibodies to the corresponding protein (figure 9). This confirmed specific binding events of antibodies to proteins in our setup. With this promising result we were one step further along our diagnostic application.
Expression of several antigens
As we propose a new diagnostic device for the detection of several diseases, we expressed several antigenic peptides in E.coli. Some of these antigens were successfully overexpressed and verified by Western Blot or SDS-PAGE (see labjournal protein purification). In addition to the expressed S. Typhimurium and C. tetani antigen, we were able to overexpress the HIV multi-epitopic antigen as well as a HCV antigen. Figure 10 shows the Western Blot for verifcation of the HIV multi-epitopic antigen using anti-HIV-1 P24 polyclonal antibody.
As ‘Health and Medicine’ is one of the most popular tracks chosen in the iGEM competition, we want to share the sequences encoding for these antigenic peptides with the iGEM community. Thus, future iGEM teams have the opportunity to take advantage of our research, if they are planning to work in the field of diagnostics. BioBricks iGEM Team Freiburg 2015