Difference between revisions of "Team:Edinburgh/Modeling"

Line 3: Line 3:
  
  
    <head>
+
<head>
 
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">
 
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css">
 
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>
 
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>
Line 94: Line 94:
  
 
     <!-- End of menu  -->
 
     <!-- End of menu  -->
 
 
<body>
 
<body>
  
 
+
      <header class="intro">
+
 
+
      <header class="intro">
+
 
         <div class="intro-body">
 
         <div class="intro-body">
 
           <div class="container">
 
           <div class="container">
 
             <div class="row">
 
             <div class="row">
 
               <div class="col-md-12">
 
               <div class="col-md-12">
                 <h1 class="brand-heading">Modeling</h1>
+
                 <h1 class="brand-heading">Modelling</h1>
 
                 <p class="intro-text">
 
                 <p class="intro-text">
 
                 </p>
 
                 </p>
Line 120: Line 116:
 
       </header>
 
       </header>
  
     
+
<section id="first">
    <section id="about">
+
<h2>Overview</h2>
        <div class="container">
+
          <p>
            <div class="row">
+
This year we focused our modeling efforts on the development of our device design.
                <div class="col-lg-12 text-center">
+
We worked on reaction-diffusion systems which helped us to find the weak points in our designs and to come up with new prototypes.
                    <h2 class="section-heading">Coming soon</h2>
+
            </p>
                    <h3 class="section-subheading text-muted">
+
<p>    
 +
The model consists of two main parts; diffusion and reaction. The diffusion part predicts how the solution, once applied, will move through the paper and the reaction part models how the different enzymes and chemicals present on the paper will react with each other.
 +
          </p>
 +
</section>
  
                    </h3>
+
<!-- END OVERVIEW -->
                </div>
+
            </div>
+
  
 +
<svg id="bigHalfCircle" xmlns="http://www.w3.org/2000/svg" version="1.1" width="100%" height="100" viewBox="0 0 100 100" preserveAspectRatio="none">
 +
<path d="M0 100 C40 0 60 0 100 100 Z"/>
 +
</svg>
 +
<section class="col-2 color" id="second">
 +
                        <div class="column">
 +
                            <img class="img-responsive" src="https://static.igem.org/mediawiki/2015/4/4c/Edigem15_Design_prototype1.jpg">
 +
                        </div>
 +
                        <div class="column text">
 +
<h2>The Base Conditions</h2>
 +
          <p>
 +
The starting conditions of the model are made by using a png image import which defines the different parts of the biosensor i.e.: where the solution is applied, hydrophobic areas, frontiers and where the enzymes are freeze dried.
 +
          </p>
 +
                        </div>
 +
</section>
 +
<svg id="bigTriangleShadow" xmlns="http://www.w3.org/2000/svg" version="1.1" width="100%" height="100" viewBox="0 0 100 100" preserveAspectRatio="none">
 +
<path id="trianglePath1" d="M0 0 L50 100 L100 0 Z" />
 +
<path id="trianglePath2" d="M50 100 L100 40 L100 0 Z" />
 +
</svg>
  
 +
<!-- END BASE -->
 +
 +
<section class = "col-2">
 +
                            <div class="column text pull-left">
 +
<h2>Diffusion-reaction </h2>
 +
        <p>
 +
A diffusion kernel, along with a diffusion matrix, control the movement of the solution on paper and form the backbone of the diffusion model. Our “world” is updated at every time step which, in turn, updates the concentration on every point of the paper.
 +
At every time step we also use a list of the reaction rates to update the model with changing concentrations. We use vector calculus throughout the code to make efficient use of resources.
 +
      <p>
 +
//Modelling movie
 +
      </p>
 +
                            </div>
 +
                            <div class="column">
 +
                              <img class="img-responsive" src="https://static.igem.org/mediawiki/2015/6/62/Edigem15_Design_prototype2.jpg">
 +
                            </div>
 +
</section>
 +
 +
<!-- END PROTOTYPE 2 -->
 +
 +
 +
 +
       
 +
 +
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 23:21, 18 September 2015

gh

Overview

This year we focused our modeling efforts on the development of our device design. We worked on reaction-diffusion systems which helped us to find the weak points in our designs and to come up with new prototypes.

The model consists of two main parts; diffusion and reaction. The diffusion part predicts how the solution, once applied, will move through the paper and the reaction part models how the different enzymes and chemicals present on the paper will react with each other.

The Base Conditions

The starting conditions of the model are made by using a png image import which defines the different parts of the biosensor i.e.: where the solution is applied, hydrophobic areas, frontiers and where the enzymes are freeze dried.

Diffusion-reaction

A diffusion kernel, along with a diffusion matrix, control the movement of the solution on paper and form the backbone of the diffusion model. Our “world” is updated at every time step which, in turn, updates the concentration on every point of the paper. At every time step we also use a list of the reaction rates to update the model with changing concentrations. We use vector calculus throughout the code to make efficient use of resources.

//Modelling movie