Difference between revisions of "Team:KU Leuven/Modeling/Internal"
Line 146: | Line 146: | ||
The constants needed for our model are $K_d$ and $n$. : | The constants needed for our model are $K_d$ and $n$. : | ||
</p> | </p> | ||
− | + | <h4> Table 1: The constants of the Hill function for cI, LuxR and PenI </h4> | |
<div class="datatable"> | <div class="datatable"> | ||
<table> | <table> | ||
Line 201: | Line 201: | ||
<p> | <p> | ||
The results are in table 1. The program gives us results in au (arbitrary units). Since we know the translation rate of LuxI and LuxR, we can use these as a base to calculate the other translation rates since the used scale is proportional. (table 1, column 2) LuxI and LuxR have almost the same output from the calculator which corresponds with the paper where they also have the same translation rate. (Ag43 has a very low translation rate, which is not completely illogical, since Ag43 is by far the biggest protein.) Our values are normal values since 1000 is a moderate value and values between 1 and 100 000 are possible. (efficient search, mapping and optimization, salis). We did get warnings about the prediction (NEQ: not at equilibrium) which happens when mRNA may not fold quickly to its equilibrium state. </p> | The results are in table 1. The program gives us results in au (arbitrary units). Since we know the translation rate of LuxI and LuxR, we can use these as a base to calculate the other translation rates since the used scale is proportional. (table 1, column 2) LuxI and LuxR have almost the same output from the calculator which corresponds with the paper where they also have the same translation rate. (Ag43 has a very low translation rate, which is not completely illogical, since Ag43 is by far the biggest protein.) Our values are normal values since 1000 is a moderate value and values between 1 and 100 000 are possible. (efficient search, mapping and optimization, salis). We did get warnings about the prediction (NEQ: not at equilibrium) which happens when mRNA may not fold quickly to its equilibrium state. </p> | ||
+ | |||
+ | <h4> Table 2: The translation rates for the different proteins as found by the RBS calculator using LuxR and LuxI as standard </h4> | ||
<div class="datatable"> | <div class="datatable"> | ||
<table> | <table> | ||
Line 262: | Line 264: | ||
Before the proteins can bind the promoter region, they first have to make complexes. cI and penI form homodimers, while LuxR first forms a heterodimer with AHL and afterwards forms a homodimer with another LuxR/AHL dimer. This next part will describe the kinetics of such complexation. We only need the parameters of LuxR and cI, because the Hill function found for penI already was adapted for the protein in monomer form. <br> | Before the proteins can bind the promoter region, they first have to make complexes. cI and penI form homodimers, while LuxR first forms a heterodimer with AHL and afterwards forms a homodimer with another LuxR/AHL dimer. This next part will describe the kinetics of such complexation. We only need the parameters of LuxR and cI, because the Hill function found for penI already was adapted for the protein in monomer form. <br> | ||
<br></p> | <br></p> | ||
+ | |||
+ | <h4> Table 3: Dissociation and association rates for the oligomerization of the transcription factors used in our circuit </h4> | ||
<div class="datatable"> | <div class="datatable"> | ||
<table> | <table> | ||
Line 335: | Line 339: | ||
<br> | <br> | ||
<p>Yang et al. (2005) studied these reactions and they found a method to estimate the constants: the Lambda approximation. Their constants of this reversible Ping-Pong Bi-Bi reactions are put in the next table : </p> | <p>Yang et al. (2005) studied these reactions and they found a method to estimate the constants: the Lambda approximation. Their constants of this reversible Ping-Pong Bi-Bi reactions are put in the next table : </p> | ||
+ | <h4> Table 4: Constants of the Ping-Pong Bi-Bi reactions using Transaminase B as found by Yang et al. (2005)</h4> | ||
<div class="datatable"> | <div class="datatable"> | ||
<table> | <table> | ||
Line 401: | Line 406: | ||
<div id="togglefive"> | <div id="togglefive"> | ||
− | <p>Proteins, mRNA and other metabolites have a turnover rate. They are degraded over time. The degradation rate will be described as | + | <p>Proteins, mRNA and other metabolites have a turnover rate. They are degraded over time. The degradation rate will be described with first order kinetics with d as the degradation constant. Not every molecule has the same degradation rate, since some molecules are more stable than others. We can influence the stability of the molecules. For example, in cell B it is important that there is a fast switch between conditions and a fast turnover of CheZ and RFP is necessary. This is why we add a LVA-tag to these proteins. This tag destabilizes the protein and makes them degradade faster. For TransaminaseB we choose a very high degradation rate, because we did not include degradation terms for the TransaminaseB bound to substrate. The degradation rates used in the model are put in the next table: <p> |
+ | |||
+ | <h4> Table 5: Degradation rates for the different biomolecules used in our circuit </h4> | ||
<div class="datatable"> | <div class="datatable"> | ||
<table> | <table> | ||
Line 526: | Line 533: | ||
We assume that the volume of the cell has a shape of a cilinder and is constant. For this simplified volume Goryachev et al. found a value of $5.65 {\cdot} 10^{-16} $ l. We can take this volume as a constant, since cell growth is very small compared to the diffusion. The outside compartment will be modeled as half a sphere with the cell as center and a radius equal to $\sqrt{2{\cdot}D{\cdot}t} + r_0$. We only take half a sphere because there is no upward diffusion. For the initial value of the outside compartment we take a volume (and thus $r_0$ slightly bigger than the cell volume (radius). We choose a value of $5.7 {cdot} 10^{-16}$l which accords to a radius of $5.128{\cdot}10^{-6}$ dm. Because there is also already a volume taken by the cell, the total initial outside compartment has an initial value of $5{\cdot}10^{-18}$ dm. The volume will increase per time step with a $\frac{2{\cdot}\pi{\cdot}D}{\sqrt{2{\cdot}D{\cdot}t}}{\cdot}{(\sqrt{2{\cdot}D{\cdot}t} + r_0)^2}$<br> | We assume that the volume of the cell has a shape of a cilinder and is constant. For this simplified volume Goryachev et al. found a value of $5.65 {\cdot} 10^{-16} $ l. We can take this volume as a constant, since cell growth is very small compared to the diffusion. The outside compartment will be modeled as half a sphere with the cell as center and a radius equal to $\sqrt{2{\cdot}D{\cdot}t} + r_0$. We only take half a sphere because there is no upward diffusion. For the initial value of the outside compartment we take a volume (and thus $r_0$ slightly bigger than the cell volume (radius). We choose a value of $5.7 {cdot} 10^{-16}$l which accords to a radius of $5.128{\cdot}10^{-6}$ dm. Because there is also already a volume taken by the cell, the total initial outside compartment has an initial value of $5{\cdot}10^{-18}$ dm. The volume will increase per time step with a $\frac{2{\cdot}\pi{\cdot}D}{\sqrt{2{\cdot}D{\cdot}t}}{\cdot}{(\sqrt{2{\cdot}D{\cdot}t} + r_0)^2}$<br> | ||
<br> | <br> | ||
− | With this approximation we get more logical results. We take the diffusion rate for AHL equal to 0.23 1/s. For Leucine we make a | + | With this approximation we get more logical results. We take the diffusion rate for AHL equal to 0.23 1/s. For Leucine we make a difference between inward and outward diffusion. Inward diffusion is facilitated by transporters, so we choose this value to be the largest. The inward diffusion rate is 0.05 and the outward diffusion 0.0005.</p> |
+ | <h4> Table 6: Diffusion rates of the molecules in our circuit </h4> | ||
<div class="datatable"> | <div class="datatable"> | ||
<table> | <table> |
Revision as of 02:24, 18 September 2015
Internal Model
1. Introduction
We can think of many relevant questions when implementing a new circuit: how sensitive is the system, how much will it produce and will it affect the growth? As such, it is important to model the effect of the new circuits on the bacteria. This will be done in the Internal Model. We will use two approaches. First we will use a bottom-up approach. This involves building a detailed kinetic model with rate laws. We will use Simbiology and ODE's to study the sensitivity and dynamic processes inside the cell. This is the bottom-up approach. Afterwards, a top-down model, Flux Balance Analysis (FBA), will be used to study the steady-state values for production flux and growth rate. This part is executed by the iGEM Team of Toulouse as part of a collaboration and can be found here
2. Simbiology and ODE
In the next section we will describe our Simbiology model. Simbiology allows us to calculate systems of ODE's and to visualize the system in a diagram. It also has options to make scans for different parameters, which allows us to study the effect of the specified parameter. We will focus on the production of leucine, Ag43 and AHL in cell A and the changing behavior of cell B due to changing AHL concentration. In this perspective, we will make two models in Simbiology: one for cell A and one for cell B. First we will describe how we made the model and searched for the parameters. Afterwards we check the robustness of the model with a parameter analysis and we do scans to check for the effects of molecular noise.
3. Quest for parameters
We can divide the different processes that are being executed in the cells in 7 classes: transcription, translation, DNA binding, complexation and dimerization, protein production kinetics, degradation and diffusion. We went on to search the necessary parameters and descriptions for each of these categories. To start making our model we have to chose a unit. We choose to use molecules as unit because many constants are expressed in this unit and it allows us to drop the dillution terms connected to cell growth. We will also work with a deterministic model instead of a stochastic model. A stochastic model would show us the molecular noise, but we will check this with parameter scans.
The next step is to make some assumptions:
- The effects of cell division can be neglected
- The substrate pool can not be depleted and the concentration (or amount of molecules) of substrate in the cell is constant
- The exterior of the cell contains no leucine at t=0 and is perfectly mixed
- Diffusion happens independent of cell movement and has a constant rate
4. System
After this extensive literature search, we can finally set up our complete system of ODEs for every cell.
5. Results
For cell A we made a simulation with cell A in the ON and OFF mode as visuable in figure (x). When cell A is in the OFF state, the whole designed circuit is in OFF mode. This means that the cI repressor is succesful in repressing the design. If the degradation rate of cI is raised to simulate the temperature rising, we see that all the components of the system show a big increase. For LuxR this increase is only temporary, but this is also explainable. Since LuxI keeps on producing AHL which binds LuxR to form a complex. Indeed all the AHL reacts to form the complex. Some values seem really high (for example the AHL,out en Leucine, extracellular values but they are also in the biggest volume so the concentration is not that high). We also assumed that there is a substrate pool without limiting, which is of course not the real situation. The most important conclusion is that with values backed up by literature, our system qualitatively still shows the desired behavior.
In the OFF state simulations, there is not a big difference between the red and green lines. We do see a very small rise in LuxR but we can ignore this because it is so small. We see a fast equilibration between the external AHL and internal AHL and no drop since there is no LuxR to react with the AHL. The only proteins that are available in high amounts are PenI and RFP. The high amount of PenI are not predicted in our design, but it does not affect the amount of RFP.
In the ON simulations we see a big difference between the red and green lines. When there is AHL available, the production of CheZ and PenI is much bigger and the production of RFP much lower. This behavior is the behavior we wished for. Thus, our system is still qualitatively showing the desired behavior.
Sensitivities
Now we are going to check which parameters have the biggest effect on the output and are the most important. For cell A the output is the Medium Leucine, Adhesine and Medium AHL.
We do the same for cell B. In cell B the output is the production of CheZ and RFP.