Difference between revisions of "Team:Glasgow/Practices"
Adele.cook (Talk | contribs) |
Adele.cook (Talk | contribs) |
||
Line 240: | Line 240: | ||
<p class="mainText"> | <p class="mainText"> | ||
On the 1st and 2nd of August, we presented a stall at Glasgow Science Centre as part of their ‘Meet the Experts’ event. This was our first chance to reach out and engage with the public to get real feedback about the things we had planned, which was overwhelmingly positive! | On the 1st and 2nd of August, we presented a stall at Glasgow Science Centre as part of their ‘Meet the Experts’ event. This was our first chance to reach out and engage with the public to get real feedback about the things we had planned, which was overwhelmingly positive! | ||
− | + | <br/> | |
+ | <br/> | ||
We used this opportunity to find out what our target market thought of Furri-Lux – to help with this, we had a large colouring-in picture of Furri-Lux’s logo for younger children, as well as blank paper for older kids to design their own ‘friendly monster’, all of which we displayed on a poster board next to our table. | We used this opportunity to find out what our target market thought of Furri-Lux – to help with this, we had a large colouring-in picture of Furri-Lux’s logo for younger children, as well as blank paper for older kids to design their own ‘friendly monster’, all of which we displayed on a poster board next to our table. | ||
These drawings later became inspiration for Furri-Lux’s outer design, as we were particularly interested in which features children associated with ‘friendly’ and ‘scary’ monsters. | These drawings later became inspiration for Furri-Lux’s outer design, as we were particularly interested in which features children associated with ‘friendly’ and ‘scary’ monsters. | ||
For their parents, we had flyers with information about iGEM, the competition, past projects as well as our project to take away and read at their leisure, along with an interactive ‘circuit quiz’ on how the bioluminescence system worked inside the cells. The right answer had to be placed onto the board for it to conduct, and light up the LED! | For their parents, we had flyers with information about iGEM, the competition, past projects as well as our project to take away and read at their leisure, along with an interactive ‘circuit quiz’ on how the bioluminescence system worked inside the cells. The right answer had to be placed onto the board for it to conduct, and light up the LED! | ||
− | + | <br/> | |
+ | <br/> | ||
On the whole, many parents appeared very receptive to the idea of a children’s product incorporating bacteria, which was greatly encouraging. A common theme seemed to be that many parents believed their children were already exposed to a lot of much more harmful bacteria in every day life, so more education for younger kids was definitely needed. | On the whole, many parents appeared very receptive to the idea of a children’s product incorporating bacteria, which was greatly encouraging. A common theme seemed to be that many parents believed their children were already exposed to a lot of much more harmful bacteria in every day life, so more education for younger kids was definitely needed. | ||
− | **Should I keep this next part?** However, their concern was apparent when we tried to talk to the children about ‘monsters under the bed’ – clearly this was a fear that parents were not immediately willing to validate, and they had put a lot of effort into trying to convince their children that these ‘monsters’ didn’t exist. Therefore, buying a product that offered help with this problem seemed | + | **Should I keep this next part?** However, their concern was apparent when we tried to talk to the children about ‘monsters under the bed’ – clearly this was a fear that parents were not immediately willing to validate, and they had put a lot of effort into trying to convince their children that these ‘monsters’ didn’t exist. Therefore, buying a product that offered help with this problem seemed contradictory and counter-productive. We at iGEM Glasgow, on the other hand, feel that validating the children’s’ fears is more important to their healthy emotional development, as well as strengthening the parent-child bond as they work through it together. |
+ | <br/> | ||
Parents also expressed concerns that curious children would try to open the container themselves – which led us to design the removable handle for the bacteria’s release. To read more about this, see our <a href = “2015.igem.org/Team:Glasgow/Design”>Product Design</a> page. | Parents also expressed concerns that curious children would try to open the container themselves – which led us to design the removable handle for the bacteria’s release. To read more about this, see our <a href = “2015.igem.org/Team:Glasgow/Design”>Product Design</a> page. | ||
Revision as of 12:28, 18 September 2015
Glasgow Science Centre
On the 1st and 2nd of August, we presented a stall at Glasgow Science Centre as part of their ‘Meet the Experts’ event. This was our first chance to reach out and engage with the public to get real feedback about the things we had planned, which was overwhelmingly positive!
We used this opportunity to find out what our target market thought of Furri-Lux – to help with this, we had a large colouring-in picture of Furri-Lux’s logo for younger children, as well as blank paper for older kids to design their own ‘friendly monster’, all of which we displayed on a poster board next to our table.
These drawings later became inspiration for Furri-Lux’s outer design, as we were particularly interested in which features children associated with ‘friendly’ and ‘scary’ monsters.
For their parents, we had flyers with information about iGEM, the competition, past projects as well as our project to take away and read at their leisure, along with an interactive ‘circuit quiz’ on how the bioluminescence system worked inside the cells. The right answer had to be placed onto the board for it to conduct, and light up the LED!
On the whole, many parents appeared very receptive to the idea of a children’s product incorporating bacteria, which was greatly encouraging. A common theme seemed to be that many parents believed their children were already exposed to a lot of much more harmful bacteria in every day life, so more education for younger kids was definitely needed.
**Should I keep this next part?** However, their concern was apparent when we tried to talk to the children about ‘monsters under the bed’ – clearly this was a fear that parents were not immediately willing to validate, and they had put a lot of effort into trying to convince their children that these ‘monsters’ didn’t exist. Therefore, buying a product that offered help with this problem seemed contradictory and counter-productive. We at iGEM Glasgow, on the other hand, feel that validating the children’s’ fears is more important to their healthy emotional development, as well as strengthening the parent-child bond as they work through it together.
Parents also expressed concerns that curious children would try to open the container themselves – which led us to design the removable handle for the bacteria’s release. To read more about this, see our Product Design page.
Overview
In order to prevent cells permanently shifting their metabolism towards one that favours light production, we decided to repress the bioluminescence genes (our optimised lux operon) in the presence of sunlight. The chosen system recognizes the presence of unidirectional UV-A light and comes from the cyanobacterium Synechocystis sp. PCC6803. The system has not been previously characterized before in iGEM. Three components are required to produce a response to UV-A: UirS (UV intensity response Sensor), UirR (UV intensity response Regulator), and PlsiR (promoter of the light and stress integrating response Regulator). For the system to be fully online K322122 is required. This BioBrick is responsible for the synthesis of phycocyanobillin, a chromophore normally found in cyanobacteria that is necessary for the functioning of nearly all light-sensing proteins. We obtained UirS and UirR from genomic Synechocystis DNA via PCR. Our primers included the BioBrick prefix and suffix as well as a ribosome-binding site (B0032). Due to non-BioBrick compatible restriction sites in the UirS gene PCR mutagenesis was carried out with the use of the TOPO TA plasmid vector. The UirR gene contained no such sites and was therefore inserted directly into the pSB1C3 plasmid. PlsiR also lacked such restriction sites and was therefore inserted into pSB1C3. Due to possible toxicity of the UirS gene, our proposed construct contains UirR and PlsiR with an appropriate coding gene in the high copy number pSB1C3, while UirS, alongside with the phycocyanobillin synthesis operon, was put in the low copy number plasmid pSB3K3. We have decided not to put a terminator between UirS and K322122 because the promoter of K322122 is stronger than that of UirS.
Sensor
Originally, the system containing UirS, UirR, and PlsiR accounts for a negative phototactic response to unidirectional UV-A light. The proposed mechanism puts UirS, a transmembrane protein of the CBCR family, as the molecule that perceives UV light. It is suggested that through a physical interaction between UirS and UirR and possibly a phosphotransfer from UirS to UirR, UirR is released from the transmembrane protein. The released UirR can now bind to DNA and UirR, which is similar to other activators of stress responses, was found to be a transcriptional activator of lsiR after binding to its promoter PlsiR .
We suggest a system where UV-light triggers the expression of a repressor that acts on the production of bioluminescence genes to alleviate the burden they may cause on the cells’ metabolism if constantly expressed. During the night, the bioluminescence genes are expressed, and produce a green-blue light. As it becomes day, UV-A causes the release and activation of UirR. UirR binds to PlsiR to turn expression of the repressor PhlF. PhlF binds to PPhlF to turn off expression of LuxCDABE, so there is no bioluminescence. As it becomes night again, UirR is no longer bound to PlsiR so expression of PhlF is turned off. As PPhlF is no longer repressed, expression of LuxCDABE is turned and bioluminescence is produced again.
We have confirmed through the use of a laser scanner that PlsiR is not active when UirS and UirR are absent. PlsiR was ligated to GFP with two ribosome binding sites of different strength and no fluorescence was observed (the parts we used for this experiment were K1725401 and K1725402) (Chart 1). Moreover, cells that possess UirR but lack UirS also did not show levels of fluorescence above the expected for E. coli. Therefore, UirR is not sufficient to drive the activation of PlsiR.
Survivability
Introduction
Initial aims
Method
Results
Conclusion
Read More!