Difference between revisions of "Team:Stony Brook/Modeling"
Line 398: | Line 398: | ||
<h5 id=cow>Rate of the influx of glucose </h5> | <h5 id=cow>Rate of the influx of glucose </h5> | ||
<ul> | <ul> | ||
− | < | + | <img src="https://static.igem.org/mediawiki/2015/c/cc/InfluxGluc.jpg"></img> |
− | + | ||
− | </ | + | |
</ul> | </ul> | ||
<h5 id=cow>Rate of EnvZ Phosphorylation</h5> | <h5 id=cow>Rate of EnvZ Phosphorylation</h5> | ||
<ul> | <ul> | ||
− | < | + | <img src="https://static.igem.org/mediawiki/2015/5/5d/EnvZPhos.jpg"></img> |
− | + | ||
− | </ | + | |
</ul> | </ul> | ||
<h5 id=cow>Rate of EnvZ Binding to OmpR</h5> | <h5 id=cow>Rate of EnvZ Binding to OmpR</h5> | ||
<ul> | <ul> | ||
− | < | + | <img src="https://static.igem.org/mediawiki/2015/0/0f/EnvZtoOmpR.jpg"></img> |
− | + | ||
− | </ | + | |
</ul> | </ul> | ||
<h5 id=cow>Rate of OmpR/OmpC Binding</h5> | <h5 id=cow>Rate of OmpR/OmpC Binding</h5> | ||
<ul> | <ul> | ||
− | < | + | <img src="https://static.igem.org/mediawiki/2015/0/08/OmpROmpCBind.jpg"></img> |
− | + | ||
− | </ | + | |
</ul> | </ul> | ||
Revision as of 00:11, 19 September 2015
Modeling
Model
Model
EnvZ Model
Sensor Design
Currently our engineered cells rely on the sensory histidine kinase, EnvZ, which senses for environmental osmolarity. In high osmolarity, EnvZ phosphorylates a transcriptional regulatory protein, OmpR, which then binds to the ompC promoter to begin the transcription of our tripeptides.
Osmolarity of the blood is affected by many factors besides just sugar levels so in the future we want to implement a sensor specifically for glucose. The lac operon has the ability to sense cAMP, which has an inverse relationship to environmental glucose concentration. To use this system, we will knock out the lacI repressor and replace lacZ with a tetR repressor. Separate from the operon, the tripeptides will be located under the control of a constitutively expressing Ptet promoter. In the case of a glucose spike (or hyperglycemia), cAMP levels would fall and transcription of the tetR repressor would drop. The lack of TetR would allow the PTet promoter to transcribe the tripeptides and regulate blood sugar.
Glucose Sensor Model
Topic 4
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam nec iaculis nisl. Integer vitae euismod tellus. Donec auctor lacus mauris, at iaculis tellus faucibus a. Maecenas id vestibulum ex. Nunc vestibulum molestie molestie. Integer nec metus id augue vehicula pharetra. Ut quis malesuada velit. Nullam urna dui, feugiat ut neque sit amet, aliquam efficitur nisi. Fusce fringilla rhoncus pulvinar. Duis nec orci eget orci accumsan consectetur. In nec justo maximus ipsum commodo imperdiet. Cras quis erat a sem semper posuere vel non tellus. Proin a dignissim est. Sed suscipit dolor eu pharetra tincidunt.
Topic 5
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam nec iaculis nisl. Integer vitae euismod tellus. Donec auctor lacus mauris, at iaculis tellus faucibus a. Maecenas id vestibulum ex. Nunc vestibulum molestie molestie. Integer nec metus id augue vehicula pharetra. Ut quis malesuada velit. Nullam urna dui, feugiat ut neque sit amet, aliquam efficitur nisi. Fusce fringilla rhoncus pulvinar. Duis nec orci eget orci accumsan consectetur. In nec justo maximus ipsum commodo imperdiet. Cras quis erat a sem semper posuere vel non tellus. Proin a dignissim est. Sed suscipit dolor eu pharetra tincidunt.
Variable Table
Name | Description |
---|---|
s | DescriptionSynthesis rate of QSP |
δ | Degradation rate of QSP |
R | Concentration of QSP |
ξ | Amount of OmpC/OmpR that’s expressing peptides |
Kon | Transcription factor activation coefficient |
Koff | Dissociation rate of OmpR for the peptide DNA |
φ | Concentration of the OmpC/OmpR complex |
M | Concentration of peptide mRNA |
Γ | Maximum transcription rate of mRNA |
σ | Degradation rate of peptide mRNA |
γ | Concentration of translated QSP |
χ | Maximum translation rate of peptide |
Ι | Concentration of incoming glucose |
ζ | Concentration of outgoing glucose |
Kin | Proportionality constant for the influx of glucose |
EnvZAct | Concentration of Activated EnvZ |
Kact | Proportionality constant for EnvZ phosphorylation |
Z | Concentration of EnvZ-OmpR-P complex |
OmpR | Concentration of OmpR |
Kphosphorylated | Proportionality constant for the phosphorylation of OmpR |
Koff | Proportionality constant for the dissociation of OmpR from EnvZ |
ε | Concentration of cAMP bound to CRP |
Con/Coff | Binding affinity of cAMP to CRP |
Τ | Degradation rate of cAMP from CRP |
P | Proportionality constant for glucose levels |
ω | Concentration of TetR |
Φ | Concentration of PTet |
τ | Dissociation constant of TetR to Ptet |
Y | Concentration of free TetR |
cAMP-CRPdis | Concentration of unbound cAMP-CRP |
cAMP-CRPbind | Concentration of bound cAMP-CRP |
υ | Activation rate of TetR |
T | Binding affinity of cAMP-CRPdis to the ABS |
Ψ | Dissociation constant of cAMP-CRPdis to the ABS |
Equations
EnvZ Equations
Rate of the influx of glucose
Rate of EnvZ Phosphorylation
Rate of EnvZ Binding to OmpR
Rate of OmpR/OmpC Binding
Rate of Transcription for peptide mRNA
Eqs
Rate of Translation of Peptide mRNA
Eqs
Code
Synthetic Sensor Equations
Rate of cAMP Binding to CRP
Eqs
Rate of tetR Activation
Eqs
Rate of tetR Repression on pTet
Eqs
Amount of Peptides Produced Under The Sensor
Eqs