Difference between revisions of "Team:UMaryland/HokSok"
Line 161: | Line 161: | ||
<div id='contentbox'> | <div id='contentbox'> | ||
<a name="HS"><p style="font-size:32px;text-align:center;font-family:Verdana, Geneva, sans-serif;"><b>Fluorescence Studies</b></a> | <a name="HS"><p style="font-size:32px;text-align:center;font-family:Verdana, Geneva, sans-serif;"><b>Fluorescence Studies</b></a> | ||
− | <p style="font-size:24px">In order to determine if Hok/Sok was capable of maintaining a plasmid without antibiotic pressure, we decided to use a visual reporter gene to quantify the ability of Hok/Sok to maintain plasmids over many generations. We decided to use a RFP along with a degradation tag as the reporter gene. The most suitable candidate was an unstable LVA-tagged RFP that has a half-life of 1 hour. The shorter half life allows for more frequent measurements of protein production. Therefore we combined a constitutive promoter and RBS to the LVA-tagged RFP through 3A assembly. We transformed this construct to E. coli Dh5 alpha to confirm the effectiveness of this reporter gene and its expression through increased fluorescence. Afterwords we ordered a g-block of our Hok/Sok+reporter construct. The expression of this reporter gene is proportional to plasmid number. Therefore, we concluded that if the cells containing a plasmid with both Hok/Sok and reporter gene could maintain fluorescence over many generations without the positive pressure of antibiotics compared to our controls, Hok/Sok can be used as a viable plasmid maintenance system. We transformed this Biobrick onto both Dh5 alpha and BL21 strains for testing. </li> | + | <p style="font-size:24px">In order to determine if Hok/Sok was capable of maintaining a plasmid without antibiotic pressure, we decided to use a visual reporter gene to quantify the ability of Hok/Sok to maintain plasmids over many generations. We decided to use a RFP along with a degradation tag as the reporter gene. The most suitable candidate was an unstable LVA-tagged RFP that has a half-life of 1 hour. The shorter half life allows for more frequent measurements of protein production that would not aggregate over time. Therefore we combined a constitutive promoter and RBS to the LVA-tagged RFP through 3A assembly. We transformed this construct to E. coli Dh5 alpha to confirm the effectiveness of this reporter gene and its expression through increased fluorescence. Afterwords we ordered a g-block of our Hok/Sok+reporter construct. The expression of this reporter gene is proportional to plasmid number. Therefore, we concluded that if the cells containing a plasmid with both Hok/Sok and reporter gene could maintain fluorescence over many generations without the positive pressure of antibiotics compared to our controls, Hok/Sok can be used as a viable plasmid maintenance system. We transformed this Biobrick onto both Dh5 alpha and BL21 strains for testing. </li> |
<li> For our first testing method to see if Hok-Sok was capable of maintaining a plasmid, we wanted to measure how RFP fluorescence was retained over many generations in two <i>E. coli</i> strains: BL21 and DH5α.</li> | <li> For our first testing method to see if Hok-Sok was capable of maintaining a plasmid, we wanted to measure how RFP fluorescence was retained over many generations in two <i>E. coli</i> strains: BL21 and DH5α.</li> | ||
<ol> | <ol> |
Revision as of 01:31, 19 September 2015