Difference between revisions of "Team:ETH Zurich/Achievements"

Line 26: Line 26:
 
<li><p>We designed a <a href="https://2015.igem.org/Team:ETH_Zurich/Description">novel system</a> for detection of circulating tumor cells in blood samples using genetically modified bacteria.</p></li>
 
<li><p>We designed a <a href="https://2015.igem.org/Team:ETH_Zurich/Description">novel system</a> for detection of circulating tumor cells in blood samples using genetically modified bacteria.</p></li>
  
<li><p>We designed a <a href="https://2015.igem.org/Team:ETH_Zurich/Design#Genetic_circuit">genetic circuit</a> that integrates two different cancer specific signals (<a href="https://2015.igem.org/Team:ETH_Zurich/Modeling/Lactate_Module">lactate </a>and <a href="https://2015.igem.org/Team:ETH_Zurich/Modeling/AHL_Module">AHL</a>)in an <a href="https://2015.igem.org/Team:ETH_Zurich/Modeling/Combined_Model">AND gate</a>.</p></li>
+
<li><p>We designed a <a href="https://2015.igem.org/Team:ETH_Zurich/Design#Genetic_circuit">genetic circuit</a> that integrates two different cancer specific signals (<a href="https://2015.igem.org/Team:ETH_Zurich/Modeling/Lactate_Module">lactate </a>and <a href="https://2015.igem.org/Team:ETH_Zurich/Modeling/AHL_Module">AHL</a>) in an <a href="https://2015.igem.org/Team:ETH_Zurich/Modeling/Combined_Model">AND gate</a>.</p></li>
 
</ul>
 
</ul>
  

Revision as of 02:04, 19 September 2015

"What I cannot create I do not understand."
- Richard Feynmann

Achievements

We are proud to announce that we accomplished the following objectives:

General Achievements

  • We designed a novel system for detection of circulating tumor cells in blood samples using genetically modified bacteria.

  • We designed a genetic circuit that integrates two different cancer specific signals (lactate and AHL) in an AND gate.

Experimental Achievements

  • We documented and submitted two new basic parts to the iGEM parts registry and created a part collection with 13 parts.

  • We characterized two newly designed hybrid promoters and were able to show that one of our combined promoters, Plac-lldR (K1847010), reacts in a clear AND gate fashion to a combination of lactate and IPTG. To our knowledge, combining these two elements has never been attempted before.

  • We Improved and characterized variants of the E. coli lldPRD-operon promoter based on the natural version (BBa_K822000), on which there is only a limited amount of information available in the Parts Registry and in the literature. The characterization of a synthetic promoter library yielded promoter variants that far outperform the wild type LldPRD promoter.

  • We designed a chip for future application of our MicroBeacon E. coli.

  • We participated in the interlab study.

  • Our experiments complied with the safety instructions at the Department of Biosystems Science and Engineering D-BSSE in Basel where our lab is situated.

Modeling Achievements

We would like to thank our sponsors