Difference between revisions of "Team:ETH Zurich/Achievements"

Line 42: Line 42:
 
<li><p>We improved and characterized variants of the <i>E. coli</i> <a href="https://2015.igem.org/Team:ETH_Zurich/Results#Characterization_of_the_LldR_promoter">lldPRD-operon promoter</a> based on the natural version (<a href="http://parts.igem.org/Part:BBa_K822000:Experience">BBa_K822000</a>), on which there is only a limited amount of information available in the Parts Registry and in the literature. The characterization of a <a href="https://2015.igem.org/Team:ETH_Zurich/Results#Characterization_of_synthetic_promoter_library"> synthetic promoter library</a> yielded promoter variants that far outperform the wild type LldPRD promoter.</p></li>
 
<li><p>We improved and characterized variants of the <i>E. coli</i> <a href="https://2015.igem.org/Team:ETH_Zurich/Results#Characterization_of_the_LldR_promoter">lldPRD-operon promoter</a> based on the natural version (<a href="http://parts.igem.org/Part:BBa_K822000:Experience">BBa_K822000</a>), on which there is only a limited amount of information available in the Parts Registry and in the literature. The characterization of a <a href="https://2015.igem.org/Team:ETH_Zurich/Results#Characterization_of_synthetic_promoter_library"> synthetic promoter library</a> yielded promoter variants that far outperform the wild type LldPRD promoter.</p></li>
  
<li><p>We characterized the <a href=”https://2015.igem.org/Team:ETH_Zurich/Results#Quorum_sensing_module__influence_of_AHL_degradation”>autoinducer inactivation enzyme (aiiA)</a>. With aiiA the quorum sensing system has 10 000x lower sensitivity.</p></li>
+
<li><p>We characterized the <a href="https://2015.igem.org/Team:ETH_Zurich/Results#Quorum_sensing_module__influence_of_AHL_degradation">autoinducer inactivation enzyme (aiiA)</a>. With aiiA the quorum sensing system has 10 000x lower sensitivity.</p></li>
<li><p>We characterized <a href=https://2015.igem.org/Team:ETH_Zurich/Results#_Experiments_involving_mammalian_cells_”>sTRAIL</a> to induce apoptosis in cancer cells.</p></li>
+
<li><p>We characterized <a href="https://2015.igem.org/Team:ETH_Zurich/Results#_Experiments_involving_mammalian_cells_">sTRAIL</a> to induce apoptosis in cancer cells.</p></li>
  
<li><p> We characterized the natural <a href=https://2015.igem.org/Team:ETH_Zurich/Results#Characterization_of_the_natural_LldR_promoter”>plldR promoter</a> and came up with the hypothesis that <a href =https://2015.igem.org/Team:ETH_Zurich/Results#Characterization_of_the_natural_LldR_promoter”>LLDR has combined repression and activation</a>.</p></li>
+
<li><p> We characterized the natural <a href="https://2015.igem.org/Team:ETH_Zurich/Results#Characterization_of_the_natural_LldR_promoter">plldR promoter</a> and came up with the hypothesis that <a href ="https://2015.igem.org/Team:ETH_Zurich/Results#Characterization_of_the_natural_LldR_promoter">LLDR has combined repression and activation</a>.</p></li>
  
  

Revision as of 03:08, 19 September 2015

"What I cannot create I do not understand."
- Richard Feynmann

Achievements

We are proud to announce that we accomplished the following objectives:

General Achievements

  • Our engineered E.coli can detect CTC based on their elevated lactate output.

  • We designed a novel system for detection of circulating tumor cells in blood samples using genetically modified bacteria.

  • We designed a genetic circuit that integrates two different cancer specific signals (lactate and AHL) in an AND gate.

  • We designed and validated a tight AND gate with a clear binary behavior.

Experimental Achievements

Modeling Achievements

We would like to thank our sponsors