Team:NU Kazakhstan/Notebook
Protocols
MAKING COMPETENT CELLS
1. Inoculate a single colony into 5 mL LB in 50 mL falcon tube (taped on a loosed tap). 2. Grow on 37°C with shaking for 130 rpm overnight. 3. Use 1 mL to inoculate 100 mL to inoculate 100 mL of LB in 250 mL bottle the next morning. 4. Shake 37°C for 1.5-3 hours. 5. When OD is between 0.3-0.4 at 600 nm wavelength put cell on ice. 6. Hold cells on ice for the 10 minutes. 7. Collect cells by centrifugation for 3 min at maximum speed (4700 rpm). 8. Decant supernatant and gently resuspend on 10 mL ice-cold 0.1 M CaCl2 (prepared in ddH2O). Treat them gently. 9. Incubate on ice for 20 minutes. 10. Centrifuge again at maximum speed (4700 rpm). 11. Discard supernatant and gently resuspend in 5 mL cold 0.1 M CaCl2 (15% glycerol). 12. Dispense into chilled microtubes, put on the dry ice. Perform this procedure very quickly. 13. Freeze in -80°C.
TRANSFORMATION
1. Start thawing the competent cells on ice. 2. Add 50 µL of thawed competent cells into pre-chilled 2ml tube, and another 50µL into a 2ml tube, labelled for your control. 3. Add 1 - 2 µL of the resuspended DNA to the 2ml tube. Pipet up and down a few times, gently. Make sure to keep the competent cells on ice. 4. Add 1 µL of the RFP Control to your control transformation. 5. Close tubes and incubate the cells on ice for 30 minutes. 6. Heat shock the cells by immersion in a pre-heated water bath at 42ºC for 60 seconds. 7. Incubate the cells on ice for 5 minutes. 8. Add 200 μl of SOC media (make sure that the broth does not contain antibiotics and is not contaminated) to each transformation 9. Incubate the cells at 37ºC for 2 hours while the tubes are rotating or shaking. Important: 2 hour recovery time helps in transformation efficiency, especially for plasmid backbones with antibiotic resistance other than ampicillin. 10. Label two petri dishes with LB agar and the appropriate antibiotic(s) with the part number, plasmid backbone, and antibiotic resistance. Plate 20 µl and 200 µl of the transformation onto the dishes, and spread. This helps ensure that you will be able to pick out a single colony. 11. For the control, label two petri dishes with LB agar (AMP). Plate 20 µl and 200 µl of the transformation onto the dishes, and spread. 12. Incubate the plates at 37ºC for 12-14 hours, making sure the agar side of the plate is up. If incubated for too long the antibiotics start to break down and un-transformed cells will begin to grow. This is especially true for ampicillin - because the resistance enzyme is excreted by the bacteria, and inactivates the antibiotic outside of the bacteria. 13. You can pick a single colony, make a glycerol stock, grow up a cell culture and miniprep. 14. Count the colonies on the 20 μl control plate and calculate your competent cell efficiency.
LIGATION
1. Add 2ul of digested plasmid backbone (25 ng) 2. Add equimolar amount of EcoRI-HF SpeI digested fragment (< 3 ul) 3. Add equimolar amount of XbaI PstI digested fragment (< 3 ul) 4. Add 1 ul T4 DNA ligase buffer. Note: Do not use quick ligase 5. Add 0.5 ul T4 DNA ligase 6. Add water to 10 ul 7. Ligate 16C/30 min, heat kill 80C/20 min 8. Transform with 1-2 ul of product
DNA EXTRACTION FROM CELLS (MINIPREP)
1. Harvest. Centrifuge 1-5 mL of the overnight LB-culture (Use 1-2×104 E.coli cells for each sample). Remove all medium. Add 2 mL of ddH2O and centrifuge again. Remove all medium. 2. Resuspend. Add 250 uL Resuspension Buffer (R3) with RNase A to the cell pellet and resuspend the pellet until it is homogenous. 3. Lyse. Add 250 uL Lysis Buffer (L7). Mix gently by inverting the capped tube until the mixture is homogenous. Do not vortex. Incubate the tube at room temperature for 5 minutes. 4. Precipitate. Add 350 uL Precipitation Buffer (N4). Mix immediately by inverting the tube, or for large pellets, vigorously shaking the tube, until the mixture is homogenous. Do not vortex. Centrifuge the lysate at >12,000 g for 10 minutes. 5. Bind. Load the supernatant from step 4 onto a spin column in a 2-mL wash tube. Centrifuge the column at 12,000 g for 1 minute. Discard the flow-through and place the column back into the wash tube. 6. Optional wash (Recommended for endA+ strains). Add 500 uL Wash Buffer (W10) with ethanol to the column. Incubate the column for 1 minute at room temperature. Centrifuge the column at 12,000 g for 1 minute. Discard the flow-through and place the column back into the wash tube. 7. Wash and remove ethanol. Add 700 uL Wash Buffer (W9) with ethanol to the column. Centrifuge the column at 12,000 g for 1 minute. Discard the flow-through and place the column back into the wash tube. Centrifuge the column at 12,000 g for 1 minute. Discard the flow-through. 8. Elute. Place the Spin Column in a clean 1.5-mL recovery tube. Add 75 uL of preheated TE Buffer (TE) to the center of the column. Incubate the column for 1 minute at room temperature. 9. Recover. Centrifuge the column at 12,000 g for 2 minutes. The recovery tube contains the purified plasmid DNA at 4⁰C (short-term) or store DNA in aliquots at -20⁰C (long-term).
DNA EXTRACTION FROM GEL
Excising and dissolving the gel
1. Equilibrate a water bath or heat block to 50⁰C. 2. Excise a minimal area of gel containing the DNA fragment of interest. 3. Weigh the gel slice containing the DNA fragment using a scale sensitive to 0.001 g. 4. Add Gel Solubilization Buffer (L3) to the excised gel in the tube size indicated in the following table: Gel Tube Buffer L3 Volume ≤2% agarose 1.7-mL polypropylene 3:1 (i.e. 1.2 mL Buffer L3 : 400 mg gel piece) >2% agarose 5-mL polypropylene 6:1 (i.e. 2.4 mL Buffer L3 : 400 mg gel piece) 5. Place the tube with the gel slice and Buffer L3 into a 50⁰C water bath or heat block. Incubate the tube at 50⁰C for 10 minutes. Invert the tube every 3 minutes to mix and ensure gel dissolution. 6. After the gel slice appears dissolved, incubate the tube for an additional 5 minutes. 7. Optional: For optimal DNA yields, add 1 gel volume of isopropanol to the dissolved gel slice. Mix well. 8. Purify the DNA using a centrifuge.
Purifying DNA using a centrifuge
1. Load. Pipet the dissolved gel piece onto a Quick Gel Extraction Column inside a Wash Tube. Use 1 column per 400 mg of agarose gel. Note: the column reservoir capacity is 850 uL. 2. Bind. Centrifuge the column at >12,000 g for 1 minute. Discard the flow-through and place the column into the Wash Tube. 3. Wash. Add 50 uL Wash Buffer (W1) containing ethanol to the column. 4. Remove Buffer. Centrifuge the column at >12,000 g for 1 minute. Discard the flow-through and place the column into the Wash Tube. Repeat Steps 3 and 4. 5. Remove Ethanol. Centrifuge the column at maximum speed for 3 minutes. Discard the flow-through. 6. Elute. Place the column into a Recovery Tube. Add 50 uL Elution Buffer (E5) to the center of the column. Incubate the tube for 2 minutes at room temperature. 7. Collect. Centrifuge the tube at >12,000 g for 5 minutes. 8. Store. The elution tube contains the purified DNA. Store the purified DNA at 4⁰C for immediate use or at -20⁰C for long-term storage.
DNA ISOLATION FROM BACTERIA
1. Pick an isolated bacterial colony and resuspend it in 1 mL of autoclaved water in a microfuge tube. 2. Centrifuge for 1 minute at 10,000-12,000 rpm. Remove the supernatant. 3. Add 200 uL of InstaGene matrix to the pellet and incubate at 56⁰c for 15-30 minutes. Note: InstaGene matrix should be mixed at moderate speed on a magnetic stirrer to maintain the matrix in suspension. The pipet tip used should have a large bore, such as 1,000 uL pipet tip 4. Vortex at high speed for 10 seconds. Place the tube in a 100⁰C heat block or boiling water bath for 8 minutes. 5. Vortex at high speed for 10 seconds. Spin at 10,000-12,000 rpm for 2-3 minutes. 6. Use 20 uL of the resulting supernatant per 50 uL PCR reaction. Store the remainder of the supernatant at -20⁰C. Repeat Step 5 when reusing the InstaGene preparation. Note: It is important to store the prepared sample at -20⁰C.
Notebook
1.06.15
- Preparation of the LB agar
We used 37 g of nutrient agar for 400 mL of distilled water - Extraction of genome from S.mutans
- First, culture S.mutans in 5 mL liquid BHI + bacitracin
- Centrifuge for 15 min at 4000 rpm
- Then dissolve the pellet in 500 microliters of Lysis Buffer
How to prepare Lysis Buffer (1 mL):
Lysis Buffer contains EDTA, Tween 80%, tris HCl,125 microliters of 8 M EDTA,5 µl of Tween 80, Tris HCl 1M 50 µl, Proteinase K (200 µg/mL). 0.0002 grams of powder Proteinase K were put into 1 mL of Lysis Buffer. The balance could not read 0.0002 g of proteinase K, so 0.02 g of proteinase K were taken.
- Incubation for 2 hours at 55°C. Heat at 90°C for 5 minutes.
- Then add equal volume of cold isopropyl alcohol.
- Incubate in freezer for 20 minutes.
- Centrifuge at the maximum speed for 30 min. Remove the supernatant.
- Add enough amount of ethanol to the pellet in order to wash
- Then add 50 µl of TE buffer
- Add 0.5 µl of the RNAase
- Incubate at 37°C for 1 hour
- Inactivate at 60°C for 10 min
- Run it in an agarose gel
- Construction of the light system
pFixK2(K592006) + rbs + tetR(C0040) + double terminator + Ptet(R0040) + rbs + RFP(J06505) + double terminator- [rbs] = 139.15 ng/µl
- [Ptet + GFP] = 199.2 ng/µl
- [pFixK2] = 131.6 ng/µl
- [double terminator] = 70.21 ng/µl
- [tetR] = 78.76 ng/µl
- Restriction digests:
Protocol for Restriction digest:
Take following amounts of reagents:
-1000 ng of DNA
-0.5 µl of each Restriction Enzyme(we used NEB enzymes)
-5 µl of CutSmart Buffer
-dH2O to get final volume of 50 µl
Incubate this mixture at 37 C for 1-2 hours and heat inactivate for 20 min at the temperature needed for particular enzyme.
Example mixture:
-pFixK2 (250 bp) was cut with EcoRI and SpeI.- pFixK2 – 7.6 µl
- EcoRI = 0.5 µl
- SpeI = 0.5 µl
- dH2O = 36.4 µl
- cut smart = 5 µl
- Overall: 50 µl
-RBS (15 bp) was cut with .
-TetR (685 bp) was cut with EcoRI and SpeI.
-Double terminator (95 bp) was cut with XbaI.
- Gel extraction of the pFixK2, RBS, tetR and double terminator
- Invitrogen by Life Technologies PureLink Quick Gel Extraction Kit was used to purify DNA.
- The small area of the gel containing the DNA fragment of interest was cut under UV.
- Mass of FixK2 = 220 mg, RBS = 80 mg, tetR = 150 mg, dTer = 140 mg
- The protocol of the PureLink Quick Gel Extraction was used to dissolve the gel and extract the DNA
- [FixK2] = 5.727 ng/µl
- [Rbs] = 4.499 ng/µl
- [tetR] = 5.216 ng/µl
- [double terminator] = 2.694 ng/µl
- Ligation of the Parts:
Protocol for Ligation:
-Take 50 ng of vector or just of bigger DNA part
-Take amount of smaller DNA part to have 1:3 molar ratio
-1 µl of T4 ligase enzyme
-2 µl of T4 buffer
-Add dH2O to have final volume of 20 µl
Incubate this mixture for 16 hours at 16 C and heat inactivate for 10 min at 65 C.
Example Ligation mixture:
-Ligation of pFixK2 + rbs- pFixK2 = 8.5 µl
- RBS = 8.5 µl
- T4 ligase = 1 µl
- T4 buffer = 2 µl
- Overall: 20 µl
-Ligation of TetR + double terminator
When ligated DNA was transformed, the plate with pFixK2 + RBS had colonies grown. The mini-prep of pFixK2 + rbs was done - The concentrations of the transformed parts:
- FixK2+ rbs= 75.79 ng/µl
- FixK2+ rbs= = 72.80 ng/µl
- TetR + dter= 56. 93 ng/µl
- TetR + dter= 95.86ng/µl
- Pveg= 84.84 ng/µl
- FixJ= 161.1 ng/µl
- PCR (Thermo Scientific Phusion High Fidelity PCR Master-mix):
Protocol for PCR reaction:
Take following reagents:
-10 ng of DNA
-10 µl of PCR MasterMix
-2 µl of each 5 µM Primer
-Add dH2O to get final volume of 20 µl
Example PCR mixture:
-PCR of FixK2- DNA = 0.03 µl *10 reactions = 0.3 µl
- Water = 5.97 µl= 59.7 µl
- Master Mix = 10 µl= 100 µl
- VF2 = 2µl = 20 µl
- VR= 2 µl = 20 µl
-
-PCR of RBS
-PCR of FixK2 + rbs
-PCR of tetR+dter
-PCR of tetR
-PCR of Double terminator
Result:
-The ligation of the FixK2+ rbs did not work
-The ligation of the tetR+ dter worked - Restriction Digests of:
-tetR
-Double terminator - PCR of the ligated parts after transformation and mini-prep:
-PCR of [FixK2+rbs+tetR] = 108.54 ng/µl
-PCR of [tetR+ double terminator] = 166 ng/µl - Running of PCR products on a gel in the following order:
- Ladder
- FixK2+ RBS
- FixK2+ rbs+tetR
- TetR
- tetR+ dter
- Inoculate a single colony into 5 mL LB in 50 mL falcon tube (taped on a loosed tap)
- Grow on 37°C with shaking for 130 rpm overnight
- Use 1 mL to inoculate 100 mL to inoculate 100 mL of LB in 250 mL bottle the next morning
- Shake 37°C for 1.5-3 hours
- When OD is between 0.3-0.4 put cell on ICE
- Hold cells on ice for the 10 minutes
- Collect cells by centrifugation for 3 min at maximum speed (4700 rpm)
- Decant supernatant and gently resuspend on 10 mL ice-cold 0.1 M CaCl2 (prepared in ddH2O). Treat them gently.
- Incubate on ice for 20 minutes.
- Centrifuge again at maximum speed (4700 rpm)
- Discard supernatant and gently resuspend in 5 mL cold 0.1 M CaCl2 (15% glycerol)
- Dispence into chilled microtubes, put on the dry ice. Perform this procedure very quickly!
- Freeze in -80°C
- PCR clean-up of:
-[FixK2+rbs] = 30.15 ng/µl
-[tetR] = 57.47 ng/ - Gel extraction after digestion:
-[FixK2 + rbs] = 5.862 ng/µl
-[tetR] = 4.621 ng/µl -
Ligation with Fermentas enzymes:
-[tetR] = 20/4.621ng/µl = 4.3 µl + [FixK2+ rbs] = 40ng/5.862 ng/µl = 7 µl
-[tetR]=4 ng/µl + [double terminator]=2ng/µl
-TetR + double terminator
-Pveg + FixJ - Ligation with NEB enzymes:
-Pveg + FixJ
-FixK+ rbs+tetR
-[FixK2 + rbs]=10.66 ng/µl + [tetR]=23.08ng/µl
-TetR+double terminator - Pveg + FixJ
- tetR+ double terminator
- FixK2+rbs+tetR
- FixK2+rbs+tetR (PCR)
- FixK2+rbs+tetR
- FixK2+tetR+ double terminator
- tetR+ double terminator
3.06.15
4.06.15
5.06.15
Protocol for making the competent dh5alpha
6.06.15
8.06.15
Transformation of Ligated products:
9.06.15
PCR after ligation:
-tetR+ double terminator
-FixK2+rbs+ tetR
-Pveg + FixJ
-FixK2+rbs+tetR
-tetR+ double terminator
-tetR+ double terminator (fermentas)
Results: Only ligation of the tetR + double terminator with NEB enzyme have worked10.06.15
Restriction Digest:
-FixK2+ rbs
-TetR + double terminator11.06.15
1.Gel extracts of:
[Pveg ] = 3.174 ng/µl
[FixJ] = 2.9045 ng/µl
2.Ligation of Pveg + FixJ12.06.15
PCR of S.mutans 16s rRNA with synthesized primers
Figure 1: There were two types of colonies growing on bacitracin selective plate. They are expected to be S. mutans and S.sobrinus. It was suggested that Sm479F/R primer pair is highly specific for identification of S.mutans(Chen et al.,2007). In the picture you see two sets of lanes corresponding to the two types of colonies from plate, and first set of lanes is of correct size.
1 reaction 8 reactions DNA 15µl 120 µl Forward primer 5 µl 40 µl Reverse primer 5 µl 40 µl Master Mix 25 µl 200 µl Sterile Water 0 0 TOTAL 50 µl 400 µl Results: № 2 Single digest of the circular plasmid with EcoRI (NEB), SpeI (NEB), Aah1, and EcoRI (fermentas) 14.06.15 №1 S.mutans 16s rRNA PCR 1 reaction 8 reactions DNA 15µl 120 µl Forward primer 5 µl 40 µl Reverse primer 5 µl 40 µl Master Mix 25 µl 200 µl Sterile Water 0 0 TOTAL 50 µl 400 µl №2 Digest of the Pet 21 with NotI · DNA= 1000/240.8 ng/µl = 4.15 µl · NotI = 1µl · Cut smart = 5 µl · Sterile water = 39.85 µl №3 Digest of the GFP with NotI · DNA = 1000 ng/117.2 ng/µl = 8.53 µl · NotI = 1µl · Cut smart = 5 µl · Sterile water = 35.47 µl №4 Pveg and FixJ Ligation (2033 base pair) №5 Digest of the FixK2+rbs with SpeI (NEB) (PCR product digest) · DNA =1000ng/121.9 ng/µl = 8.2 µl · SpeI = 1µl · Cut smart = 5 µl · Sterile water = 35.8 µl №5 Digest of the FixK2+rbs with Aah1 (SibEnzyme) (PCR product digest) · DNA = 1000 ng/121.9 ng/µl = 8.2 µl · Aah1 = 1 µl · SEB buffer = 5µl · BSA= 0.5µl · Sterile water = 35.3 µl Results: The size of the FixK2+rbs (265 base pairs) do not coincide with the gel 15.06.15 №1 Solution on the day of the 15.06.2015 Transformation of the parts from Kit 2014 · Promoter FixK2 (Plate 1, 19G) – 250 base pair · RBS (Plate 4, 4G) – 15 base pairs · FixJ (Plate 1, 10N) – 1796 base pairs · RFP mCherry with double terminator (Plate 1, 13K) = 861 b.p · Promoter Veg (plate1, 20G) = №2 Genome extraction from S.mutans with Instagene Matrix №3 PCR of the 16S rRNA of the S.mutans Photo will be here 16.06.2015 № 1 Mini prep of of the parts pFixK2 = 78.03 ng/µl Rbs = 171.8 ng/µl FixJ = 124.5 ng/µl Rfp + double terminator = 82.75 ng/µl Promoter Veg = 42.20 ng/µl № 2 Double Digest of the FixK2 DNA : 12.82 µl Cut smart: 5 µl SpeI:0.5 µl EcoRI: 0.5 µl Sterile water: 38.18 µl Overall: 50 µl №3 Single digest of the FixK2 DNA: 12.82 µl SpeI: 1 µl Сut Smart Buffer: 5 µl Sterile Water: 31.18 µl № 4 Double Digest of the RBS DNA: 5.82 µl EcoRI: 0.5 µl XbaI : 0.5 µl Buffer: 5 µl Sterile water: 38. 18 µl № 5 Colony PCR 17.06.2015 №1 Gel extraction of the FixK2 and rbs FixK2 (double digest) = 4.128 ng/µl FixK2 (single digest) = 3.315 ng/µl Rbs = 3.051 ng/µl №2 Ligation of the FixK2 (double digest) + rbs FixK2 = 7µl Rbs = 9 µl T4 ligase = 1 µl T4 buffer = 2 µl Sterile water = 1 µl № 3 Ligation of the FixK2(single digest )+rbs in order to obtain linear plasmid FixK2 = 8 µl rbs = 9 µl T4 -ligase = 1 µl T4 buffer = 2 µl № 4. Double digest of 1st line -Pveg (EcorI-SpeI), 2nd line FixJ (EcorI-XbaI), 3rd line RFP (EcorI - XbaI): № 5. Transformation of (Fixk2 + rbs) was done, one tube. 18. 06.2015 Double check Transformation of [Fixk2 + rbs] We did not simultaneously perform digest and ligation since we wanted to check the work of the enzymes in double digest 2. Gel extraction of parts: Pveg, FixJ, RFP 3. Ligation reaction (rest parts): Pveg + FixJ Pveg +RFP. Reaction volumes for two reactions are the same: ul = µl Pveg = 24 ul FixJ/RFP = 48 ul Buffer = 8 ul ligase = 4 ul However, from now on we will use the the protocol DNA distribution according to 50 ng (insert) : 50 ng (backbone) notation 4. Chrm and Bacitracin plates were done (Bacitracin Mol. weight is 1422.71 g/mol and the concentration in stock (ex: 500 ml LB agar) should be 0.2 µM, while the conc. of bacitracin is 50 mg/ml): (50 mg/ml)/ 1422. 71 = 0.035 M in eppendorf tube 0.035 M x Y= 0.2 µM x 500 ml Y = 0.00286 ml = 2. 86 µl Chrm conc: 500 µl for 500 ml of LB agar 5. MinElute Reaction cleanup kit was obtained (to purify after digestion and go directly to transformation) Ethanol (220 ml) was added 6. Kit has arrived!!!!!) 7. Miniprep of LB broth (Fixk2+rbs) FixK2+ rbs = 217.7 ng/µl 19. 06. 2015 № 1 Transformation of the ligated parts 1- agarplate ; dCas9 under xylose (2015 Kit, plate=5, 8L) chloromphenicol resistant 2- agar plate: Anderson promoter (plate 1, 20 K) chloromphenicol resistant 3-agar plate: Anderson promoter (plate1, 22A) 4-agar plate: Anderson promoter (plate 1, 22 K) 5-agar plate; GFP (plate 4, 21J) 6-agar plate; Mukhtars part (plate 5, 24D) 7-agar plate; P veg+ FixJ 8-agar plate; Pveg+ RFP 9-agar plate; Pveg+ FixJ (20 µl) 10 - agar plate: Pveg + RFP (20 µl ) 2. PCR confirmation of the Fixk2+rbs ligation part obtained from miniprep 1- ladder, 2- FixK2, 3- FixK2+rbs, 4 - FixK2+ rbs Photo will be here Results; The size of the FixK2, FixK2 + rbs do not coincide with the right one. 3. Genome extraction from S.mutans by Instagene Genome Extraction and PCR PCR S.Mutans = 15 ul P1 = 5 ul P2 = 5 ul MM (Buffer) = 25 ul Fikx2 = 0.4 ul (on 3 tubes per 20 ul) VF2 = 6 ul VR = 6 ul MM = 30 ul water = 17.6 ul RESULTS: S.Mutans = No band amplification FixK2 = 600 bp part was shown as amplified Photo will be here! 20.06.2015 25.06.2015 № 1 PCR of the S.mutans. Number 2 plate (grown from single colony). Genome isolated by Instagene Matrix DNA = 15 ul Primer Forward = 5 ul Primer Reverse = 5 ul Master Mix = 25 ul № 2 PCR of the S.mutans ( colony taken from Namber 2 plate) DNA = 15 ul Primer Forward = 5 ul Primer Reverse = 5 ul Master Mix = 25 ul Results: The amplicon of the size 479 base pair is detected. First raw is the ladder, second is the amplicon which was PCR-ed with extension time 1 min, third is the amplicon with extension time with 14 seconds. №3 Negative control with the Bacillus Subtilis genome. Genome of the Bacillus was extracted with Instagene matrix 26.06.2015 30.06.2015 №1 Transformation of the FixK2 ( Kit 2015, Plate 1, 19G) №2 Restriction digest of the FixJ with the EcoRI and XbaI DNA = 1000ng/124.5ng/ul = 8 ul EcoRI = 1 ul XbaI = 1 ul Cut Smart = 5 ul Sterile Water = 35 ul Second raw after ladder is FixJ (already cut for gel extraction ) №3 Restriction Digest of the Pveg with EcoRI and SpeI DNA = 1000 ng/42.20ng/ul = 24 ul EcoRI = 1 ul SpeI = 1 ul Cut Smart = 5 ul Sterile Water = 19 ul №4 Gel extraction of the FixJ and Pveg FixJ = 2.217 ng/ul Pveg =2.892 ng/ul №5 Ligation was performed in two ways. DNA was taken from gel extraction Pveg= 9 ul FixJ = 8 ul T4 -ligase = 1 ul T4 -buffer = 2 ul 2. DNA was taken directly from digestion solution without clean up Pveg = 8.5 ul FixJ = 8.5 ul T4 ligase= 1 ul T4 buffer= 2 ul 07/07/15 Activity № 1 Results: Digest = sequential (1 line): 250 bp = Fixk2 PCR gradient: 4-11 line, 580 bp cmv promoter, actual size = 900 bp, digest of cmv was successful but , pcr shows that primers are impaired, since Master Mix and water were new and clean, dna was the same as for digest. 8.07.2015 Activity № 1. Sequential Digest of the Pveg with SpeI (sib enzyme) and EcoRI (fermentas) Pveg = 12.5 ul SpeI (sib) = 1 ul BSA = 0.5 ul Seb buffer = 5 ul Sterile water = 31 ul Incubation for 2 hours at 37 degree C + NaCl = 1 ul (5 M) +BSA (0.5 ul) +1 ul EcoRI (Fermentas) Results: Pveg of the size 237 base pair was seen on the agarose gel 9.07.2015 Activity №1. Transformation FixK2+rbs Cmv+neomycin GFP Anderson promoter Anderson promoter Anderson promoter Activity № 2. Digest of the RFP mcherry+ double terminator with Invitrogen EcoRI and XbaI Results: The second line shows that there are two bands that are located very close to each other. This result suggests that upper band is the uncut plasmid, while the lower band is the one that was successfully digested. However, there is still doubt is it cut with one enzyme or both? Activity № 3. Gel extract of the Pveg that was sequentially digested with SpeI (sib enzyme) and EcoRI (fermentas) Pveg = 30.78 ng/ul mcherryRFP + double terminator (digested with EX from Invitrogen) = 9.36 ng/ul Activity № 4. Ligation of the Pveg+ mcherryRFP with double terminator 10x T4 DNA Ligase Buffer = 2 ul T4-ligase = 1 ul Pveg = 150 ng/30ng/ul = 4.87 ul RFP = 50 ng/9.36 ng/ul = 5.34 ul Sterile water = 6.79 ul 10.07.2015 Activity № 1. Checking of the Ligation of the Pveg+FixJ mini prep product by making sequential digest with SpeI (Sib enzyme) and EcoRI (fermentas) Results: There are two bands. One is the 2500 bp. Another is 2000 base pair. However, if Pveg+ FixJ ligation have worked there would be also uncut plasmid after digestion of size 4500. So, it was decided to make single digest with EcorI in order to check if there would be a liniarized plasmid of 4500 base pair size. Activity №2. Single digest of the Pveg+FixJ with the EcoRI (Neb enzyme) DNA= 1000 ng/94.69 ng/ul = 10.56 ul Cut smart = 5 ul EcoRI = 1 ul Sterile water = 33.44 ul Overall: 50 ul Results: First raw is ladder, second is plasmid after ligation of Pveg+FixJ, third is Pveg+FixJ plasmid cut with EcoRI. The results shows that there is no linearized plasmid with the 4500 base pair after ligation. So ligation did not work. Activity №3. Transformation Double Terminator =2014 Kit, plate 1, 3D, chloromphenicol RBS = 2014 Kit, plate 4, 4G, chloromphanicol Pveg= 2014 Kit, plate 1, 20G, chloromphenicol Ligation product= Pveg + mcherry RFP (cut was done by EX of Invitrogen)