Difference between revisions of "Team:Amsterdam/Human practices/Collaboration"

Line 17: Line 17:
 
<section class="special">
 
<section class="special">
 
    <figure class  = "image fit">
 
    <figure class  = "image fit">
    <img src="https://static.igem.org/mediawiki/2015/b/b1/Amsterdam_app_mainpic.png">
+
    <img src="https://static.igem.org/mediawiki/2015/9/98/Printer.png">
 
    </figure>
 
    </figure>
 
  </section>
 
  </section>
Line 27: Line 27:
 
<div class="row">
 
<div class="row">
 
<div class="6u">
 
<div class="6u">
<header class = "major"><h3>Introduction</h3></header>
+
<header class = "major"><h3>Delft</h3></header>
 
<p>
 
<p>
The iGEM team of Amsterdam is creating a self-sustaining bio-factory of cyanobacteria and chemotrophs. The cyanobacteria produce sugars and oxygen from CO2 , water and light; known as photosynthesis. In their prototype consortium the sugars are used as a carbon source for, E.coli, which uses it to create a desired end-product. In their proof-of-concept bio-factory this product will be isobutanol, a potential biofuel. That being said, their cyanobacterial carbon fixation module can be coupled to a multitude of biotechnological production processes to make these processes more sustainable.
+
The TU Delft iGEM team designed constructs that give bacteria the ability to form nanowires between each other, creating an extracellular matrix which forms a structure, and form a biofilm. In the project of Amsterdam, the E.coli and cyanobacteria will form the biofilms. The E.coli bacteria are producing the nanowires. The cyanobacteria will be trapped by these nanowires in such a way that specific structures of both E.coli and cyanobacteria are formed. These specific structures can increase the production rate as the  ratio of cyanobacteria to E.coli can be engineered to ideally match the steady state conversion rates, while at the same time reducing diffusion limitations between both partners.  
 
</p>
 
</p>
 +
</div>
 +
<div class = "6u">
 +
<header class = "major"><h3>Amsterdam</h3></header>
 
<p>  
 
<p>  
The TU Delft iGEM team designed constructs that give bacteria the ability to form nanowires between each other, creating an extracellular matrix which forms a structure, and form a biofilm. In the project of Amsterdam, the E.coli and cyanobacteria will form the biofilms. The E.coli bacteria are producing the nanowires. The cyanobacteria will be trapped by these nanowires in such a way that specific structures of both E.coli and cyanobacteria are formed. These specific structures can increase the production rate as the  ratio of cyanobacteria to E.coli can be engineered to ideally match the steady state conversion rates, while at the same time reducing diffusion limitations between both partners.  
+
The iGEM team of Amsterdam is creating a self-sustaining bio-factory of cyanobacteria and chemotrophs. The cyanobacteria produce sugars and oxygen from CO2 , water and light; known as photosynthesis. In their prototype consortium the sugars are used as a carbon source for, E.coli, which uses it to create a desired end-product. In their proof-of-concept bio-factory this product will be isobutanol, a potential biofuel. That said, their cyanobacterial carbon fixation module can be coupled to a multitude of biotechnological production processes to make these processes more sustainable. Using TU Delft’s 3D printer could improve both the reproducibility and specificity of a biofilm-based consortium. The 3D printer would, for example, be able to print a layer of cyanobacteria in between two layers of E.coli to create specific patterns that optimize carbon sharing and product formation in Amsterdam’s consortium.  
 
</p>
 
</p>
 
</div>
 
</div>
Line 41: Line 44:
 
<div class = "row">
 
<div class = "row">
 
<div class = "6u">
 
<div class = "6u">
<header class = "major"><h3>Duosion Green Technology</h3></header>
+
<header class = "major"><h3>A photosynthetic leaf</h3></header>
 
<p>
 
<p>
 
Founded by the original 2015 iGEM team, Duosion Green Technology (DGT) is a microbial consortium engineering company that develops ecosystems consisting of microbial strains to produce compounds in a more sustainable way through the addition of the cyanobacterial solar-to-chemical energy module or more complex products through distributed metabolic pathways. Duosion licenses these custom strains to leading producers, which use the engineered consortium strains in their bioreactors to produce a desired end product.
 
Founded by the original 2015 iGEM team, Duosion Green Technology (DGT) is a microbial consortium engineering company that develops ecosystems consisting of microbial strains to produce compounds in a more sustainable way through the addition of the cyanobacterial solar-to-chemical energy module or more complex products through distributed metabolic pathways. Duosion licenses these custom strains to leading producers, which use the engineered consortium strains in their bioreactors to produce a desired end product.

Revision as of 20:38, 18 September 2015

iGEM Amsterdam 2015

Collaboration: imagining the future together

In the world of iGEM, teams from different universities usually work on distinct projects tackling separate issues. Sometimes, however, the combination of two projects can give rise to novel solutions that could not be achieved by either project alone. As it turns out, the iGEM projects of team Amsterdam and team TU Delft give rise to such combination. In this essay we wrote together, we explore how our projects could be combined and describe a potential application of combining Amsterdam’s synthetic consortium with Delft’s nanowires and 3D-biofilm printer.

3D-printing biofilm-based consortia

Creating a new generation of affordable biorefineries

An exploration of an application based on combined projects and visions
iGEM Amsterdam & Synenergene

Delft

The TU Delft iGEM team designed constructs that give bacteria the ability to form nanowires between each other, creating an extracellular matrix which forms a structure, and form a biofilm. In the project of Amsterdam, the E.coli and cyanobacteria will form the biofilms. The E.coli bacteria are producing the nanowires. The cyanobacteria will be trapped by these nanowires in such a way that specific structures of both E.coli and cyanobacteria are formed. These specific structures can increase the production rate as the ratio of cyanobacteria to E.coli can be engineered to ideally match the steady state conversion rates, while at the same time reducing diffusion limitations between both partners.

Amsterdam

The iGEM team of Amsterdam is creating a self-sustaining bio-factory of cyanobacteria and chemotrophs. The cyanobacteria produce sugars and oxygen from CO2 , water and light; known as photosynthesis. In their prototype consortium the sugars are used as a carbon source for, E.coli, which uses it to create a desired end-product. In their proof-of-concept bio-factory this product will be isobutanol, a potential biofuel. That said, their cyanobacterial carbon fixation module can be coupled to a multitude of biotechnological production processes to make these processes more sustainable. Using TU Delft’s 3D printer could improve both the reproducibility and specificity of a biofilm-based consortium. The 3D printer would, for example, be able to print a layer of cyanobacteria in between two layers of E.coli to create specific patterns that optimize carbon sharing and product formation in Amsterdam’s consortium.

A photosynthetic leaf

Founded by the original 2015 iGEM team, Duosion Green Technology (DGT) is a microbial consortium engineering company that develops ecosystems consisting of microbial strains to produce compounds in a more sustainable way through the addition of the cyanobacterial solar-to-chemical energy module or more complex products through distributed metabolic pathways. Duosion licenses these custom strains to leading producers, which use the engineered consortium strains in their bioreactors to produce a desired end product.

Bio-independence Unlimited

Filling the gap opened by the change in energy policies after the Paris Climate Conference, Bio-independence designs and produces easy-maintenance, low-budget bioreactors hosting photosynthesis-coupled synthetic consortia for sustainable production. These reactors are mostly deployed in rural areas for agricultural communities, where the goal is to provide food supplements or additives either for human or cattle consumption. The final product is customized based on the client community’s needs. Depending on the location and situation of the community, end products may range from probiotics and antioxidants to vitamin B12 and L-threonine. Besides direct consumption, products may be sold via Bio-independence’s network of producers as extra income, which can initially be used to repay the microcredits used to acquire the bioreactors. If cost-effective production can be achieved at small scale in the future, commodities like propane (fueling local machinery and heating equipment) and nitrate (used as local fertilizer) could also be produced.

Cloyster Incorporate

Cloyster, a Multinational company founded by former members of Shell in 2019, is the necessary transition of oil and gas manufacturers into more sustainable producers of biofuels. Cloyster has as many bioreactor designs as the amount of different substances it produces. But for consortia systems in general, two chamber bioreactors are used where Synechocystis is grown in flat or tubular panels and medium is pumped out and filtered to the chemotroph compartment where the product is made. The major factor influencing the design of the later chamber is the chemical properties of the product it wants to extract. Its department for biofuel production currently focuses on the production of easy-to-extract propane at large scale used for the heating of entire cities. That said, efforts are under way to develop cost-effective production methods for a variety of other, high-alkane biofuels. Also, Cloyster’s biorefineries function in closed-loop systems with existing industrial facilities for the production of chemicals, plastics and cement.