Experiments and Protocols
The nuts and bolts
Phasellus quam turpis, feugiat sit amet ornare in, hendrerit in lectus. Praesent semper mod quis eget mi. Etiam eu ante risus. Aliquam erat volutpat. Aliquam luctus et mattis lectus sit amet pulvinar. Nam turpis nisi consequat etiam lorem ipsum dolor sit amet nullam.
Protocols
Lactis
Media
- M17-G (liquid media) = M17 broth + 0.5% glucose (added after autoclaving M17)
- SMC-M17-G (recovery media for transformations) = 5ml 2X M17-G + 5 ml 1 M sucrose + 100 μL 2 M MgCl2 + 40 μL 0.5 M CaCl2
- SM17-G agar (solid media) = M17 + 0.5 M sucrose + 0.5% glucose + 1.5% agar
Electrocompetent Cell Prep
- Overnight culture of L. lactis in M17-G at 30°C and no shaking
- Measure the OD600 of the M17-G media (or blank with this)
- Inoculate overnight cells at 2% to 100 ml (or less) fresh M17-G liquid media
- Place the M17-G culture into 30°C incubator, cells will grow for next 2-4 hours
- While waiting, turn on ice machine, turn on centrifuge and set temperature to 4°C
- Place 4x 50mL falcon tubes in the -20°C freezer
- Place 4x 50 mL falcon tubes of double distilled water into 4°C fridge
- Place 2x 50 mL falcon tubes of sterile 10% glucose into 4°C fridge
- Place approximately 60 sterile bullet tubes (lids closed) into the -20°C
- Measure the OD600 of the culture every 30 min for the first 2 hours. When OD600 reaches 0.4, record every 15 min. When OD600 reaches between 0.5 and 0.6, take culture out of incubator and place immediately on ice and swirl the contents of the flask to cool
- Start centrifuging down the cells in the 4x 50mL pre-chilled falcon tubes. Have the settings of the centrifuge at 3500 rpm, 25 min, and 4°C. Ensure centrifuge is balanced
- Pour off supernatant and re-suspend cells with 50mL ice cold double distilled water; centrifuge at same settings
- Repeat steps 11 and 12; make sure the cells stay chilled and work quickly
- After the last re-suspension, combine tubes, centrifuge, and then re-suspend in 30mL cold, sterile 10% glucose
- Centrifuge and then re-suspend final pellet in about 1mL 10% glucose
- Aliquot 50 μL (or up to 100 μL) of cells into pre-chilled bullet tubes
- Immediately place all bullet tubes into -80°C freezer
Electroporation Transformation
- Follow the sterilization method for E. coli transformations described above
- Use 50 μL, or up to 100 μL prepared cells, add 1-5 μg DNA
- Can use less DNA if you don’t have that much
- Can use less for most pTRKH2 transformations (especially positive control, just need a couple hundred nanograms), typically want to have close to 1 μg DNA
- Transfer cell suspensions to a pre-chilled and sterile 0.2 cm gap electroporation cuvette
- Electroporate at 2000 V, 400 Ω, and 25 μF
- Add 0.9 mL SMC-M17-G and transfer to 1.5 mL tubes, keep on ice 5-10 min
- Incubate at 30°C for 2 hours
- Plate on SM17-G agar + antibiotic (pTRKH2: 2.5 μg/mL erythromycin (Erm))
- Incubate at 30°C, preferably anaerobically, but should still grow in aerobic conditions (will just take a day or so longer
Glycerol Stock Prep
- Take 1 mL of overnight L. lactis culture and add 500 μL to two sterile, labeled 1.5 mL bullet tube.
- Add 500 μL sterile 20% glycerol to each tube
- Mix well by either inverting the tube or pipetting up and down several times
- Immediately place the cells into the -80°C freezer for later use
DNA Extraction Using Qiagen
Our lab normally uses the CTAB DNA extraction method, however this method does not work with L. lactis, therefore we have to use the Qiagen alkaline lysis kit.- Grow up 5 mL culture overnight in LB (6 mL if you want glycerol stock – 1 mL will be used for the frozen stock, which should be removed before pelleting the cells in the next step)
- Pellet 5-10 minutes in centrifuge at 3000-3500 rpm
- Pour off supernatant
- Check P1 solution for the checked RNase added box
- Add 250 µL solution P1 to the 10 mL culture tube
- Suspend the pellet in the P1 by pipetting up and down
- Transfer suspended pellet to a 1.5 mL tube
- Add 250 µL solution P2 to the tube
- Mix by inverting the tube by hand 10-20 times. Solution should turn blue throughout, if not, continue inverting until blue throughout
- Allow lysis to occur for 3-4 minutes (no more than 5 minutes)
- Add 350 µL solution N3 to the tube
- Mix by inverting tube by hand 10-20 times. Solution should lose all blue color, if not, continue inverting until all blue is gone.
- Centrifuge at 13,000 rpm for 10 minutes (keep the hinge out to get the pellet to form correctly)
- Using a pipette, remove the supernatant from the tubes, and apply to a labeled blue spin column from the kit
- Centrifuge at 13,000 rpm for 1 minute
- Pour flow-through BACK into the column and centrifuge at 13,000 rpm for 1 minute 17. Discard flow through
- Add 750 µL PE solution to tube and centrifuge at 13,000 rpm for 1 minute
- Discard flowthrough and centrifuge again at 13,000 rpm for 1 minute
- Transfer blue column to a fresh 1.5 mL tube (labeled)
- Add 30-50 µL ddH2O (depending on how concentrated you want your final DNA). Buffer EB (supplied in the kit) can also be used.
- Incubate on benchtop for 10-15 minutes
- Centrifuge at 13,000 rpm for 1 minute and discard column
- Nanodrop to determine DNA concentration
DNA Extraction using CTAB
- Preparation step: Make sure Lysozyme (50 mg/mL) and RNase A (10 mg/mL) stock solutions have been prepared.
- Preparation step: Make sure CTAB solution is dissolved. If crystals of CTAB are on the bottom of the bottle, place in 37oC incubator and shake occasionally to re-suspend. CTAB is just above its soluble conditions at normal room temperature, and if the atmospheric pressure is low the day you are extracting DNA, it might come out of solution.
- Prepare two water baths, one boiling and the other 68C (this can also be accomplished with just the digital waterbath, by bringing the temp to 99/100C, then adding some water to the tank to help it cool down to 68C by the time that water temp is needed)
- Centrifuge the 12 ml tubes containing the 5 ml cultures in the large centrifuge at 3K RPM for 10 min. Discard supernatant liquid.
- Re-suspend cells in 200 ul of “STET for CTAB” buffer. Transfer to 1.5 ml tubes.
- Add 5-10 ul (10 uL if older preparation) Lysozyme (50 mg/ml) and incubate at room temperature for 5 min.
- Boil for 45 seconds and centrifuge for 20 min at 13K RPM (or until pellet gets tight).
- Use a pipette tip to remove the pellet by dragging it (it should be somewhat slimy, but if pelleted well enough, it will hold together), if it doesn’t hold together, re-centrifuge and retry.
- Add 5 ul RNase A (10 mg/ml) and incubate at 68C for 10 minutes.
- Add 10 ul of 5% CTAB and incubate at room temperature for 3 min.
- Centrifuge for 5 min at 13K RPM, discard supernatant, and re-suspend in 300 ul of 1.2 M NaCl by vortexing.
- Add 750 ul of ethanol
- Optional Step (but gives better yield): incubate for 30 mins in -20oC freezer to help DNA precipitate
- Centrifuge for 5 min at 13K RPM to compact DNA pellet. Make sure the hinge is away from the center of the rotor, this will make the pellet form on the bottom of the tube on the side of the hinge (it might be hard to see or invisible, so this way you know where it should be)
- Discard supernatant, rinse pellet in 80% ethanol, and let tubes dry upside down with caps open.
- Re-suspend DNA in ddH2O (50 uL). Vortex or pipette up and down to ensure re-suspension of DNA.
Making Agarose Gels
Agarose gels are useful for DNA purification and analysis of DNA sizes. The gels are made up of an agarose matrix composed of long strands of agarose, and gaps of various sizes between the strands. The larger the DNA molecule, the longer it takes to fit through the gaps, making its progress through a gel slower than a small DNA molecule. The DNA is drawn through the gel using an electric current; the negatively charged phosphates on the DNA backbone being attracted toward the cathode (“Run towards red” is a helpful mnemonic as the cathode is generally red colored). By varying the concentration of the agarose gel, it is also possible to increase the separation of bands of certain sizes on the gel. A 1% agarose gel is generally used as it provides separation of bands from 200 bp to 3000 bp. For separating larger bands, a 0.7% gel is typically used and the smaller DNA fragments are run completely off the bottom of the gel. For separating smaller bands, a 2% or 1.5% gel can be used, and run normally. Gels are useful for purifying DNA bands of a particular size from restriction digests (to prevent multiple products from forming during ligations) and also for removing proteins from a DNA sample (such as restriction enzymes that are not inactivated by heat). Gel purification has the downside of losing some DNA, and reducing overall DNA concentration (a 120 bp band of DNA in a 2000 bp plasmid will only give .06 µg of DNA if 1 µg of total DNA digest is added to the lane). For small band sizes (< 200 bp), it may be necessary to use CIP or TAP dephosphorylation and ligation using the digested DNA solution without gel purification.
- Determine the number of lanes you wish to run. Always plan for 1-2 lanes of the DNA ladder (2 especially if this gel will be cut up and DNA removed from it), or another suitable control. Most lanes can hold 20-25 µL of sample, so larger samples may need to be run on two lanes, or use the larger lane combs (40-50 µL capacity). The small gel box can hold 6 lanes of large capacity or 10 lanes of smaller capacity. The larger gel box can hold 12 lanes of large capacity or 20 lanes of small capacity. The large gel box is also capable of having 2 combs at a time (the second placed ½ down the box), and so its capacity can double at the cost of distance over which it can separate bands.
- Once your gel box is selected, determine the concentration of gel you wish to make (see description for details). The concentration is the mass of agarose/mL of gel x 100%. The small gel box supports gels of 50 mL (potentially up to 75 mL, but 50 is easier to use) and the large gel box supports gels of 200 mL.
- Set up the gel box by removing the gel tray. Make sure the rubber seals are still in their grooves. Apply a small amount of water to the inside of the side walls of the gel box and to the ends of the gel tray that have the rubber seals. Slide the gel tray into the gel box so that the open ends of the tray are against the box walls, and so that the rubber seals have not rolled up out of their grooves (if the seals moved, return them to their grooves and try sliding the tray in again).
- Add the correct gel combs to the gel. The main comb for both gels goes into the first notch on the gel tray (should be 1-2 cm from an end), the secondary comb for the large gel is placed in the notch in the middle of the tray. The small gel combs have two sides (one thinner than the other) the thinner side has about 2/3 of the capacity volume of the thick side (which has the capacities listed in #1), so choose what you need.
- In a flask that can hold at least 4x your gel’s volume, add the correct volume of 1x TAE buffer. DO NOT ADD WATER – the gel will not work correctly.
- Weigh out the correct mass of agarose (NOT AGAR) and add it to the flask.
- Microwave the solution until it boils. There are two stages of boiling – where small white bubbles form (frothy) and where large clear bubbles form. You want to let it boil a bit past the frothy stage and into the clear bubble stage. These bubbles will pop naturally, and will keep you from having a bubble filled gel. It is necessary when using higher gel concentrations (and recommended for all other concentrations) that the microwaving occur in 30 second increments, with the solution being stirred by GENTLE rotation (wear protective heat gloves) after each 30 second period, to ensure proper agarose distribution.
- After microwaving add Ethidium Bromide to the gel solution. WARNING – carcinogen, glove use is advised (if you get it on yourself, wash your skin with water for 5 minutes – its very water soluble). Add 1 µL of Ethidium bromide for EACH 10 mL of gel volume (5 µL for small gel, 20 µL for large gel).
- Mix Ethidium Bromide into the solution by GENTLE swirling (to avoid bubbles).
- The gel solution can be allowed to cool slightly before pouring into the gel box (pouring boiling solution into gel box can cause it to warp and bend over time).
- Gently pour the gel into the gel tray by leaning it on the gel box wall farthest from the top comb, and slowly tipping it into the box. This prevents bubbles from forming in the gel, and if they do form, forms them near the bottom of the gel.
- If additional bubbles form in the gel box, while the gel is still liquid take a pipette tip and push the bubbles to the bottom edge of the gel, where they won’t interfere with DNA movement.
- Allow gel to cool for 40 minutes to 1 hour. Test solidification by gently pressing on the bottom corner of the gel with a finger, it should feel solid and gel-like (not liquid).
Restriction Digests
All restriction digests were carried out using Fermentas reagents and restriction enzymes. The Fermentas FastDigest® (FD) reagents were used.
In a tube the following was added:
- 4 µg DNA
- 4µl 10x FD Green buffer
- 1 µl FD restriction enzyme 1
- 1 µl FD restriction enzyme 2
- Volume brought up to 40µl total with nuclease free water