Difference between revisions of "Team:Paris Bettencourt/Project/VitaminA"
Line 8: | Line 8: | ||
<br> | <br> | ||
<h4>Background? State of the art? Introduction? Motivation?.....</h4> | <h4>Background? State of the art? Introduction? Motivation?.....</h4> | ||
− | <p>Saccharomyces cerevisiae is a yeast commonly found in idli batter (Soni and Sandhu, 1989 and Nout, 2009). Though it doesn’t naturally produces ß-carotene, it has been shown that with the introduction of two carotenogenic genes from the carotenoid-producing ascomycete Xanthophyllomyces dendrorhous, S. cerevisiae could synthesize ß-carotene (Verwaal et al., 2007). These two genes are crtYB which codes for phytoene synthase and lycopene cyclase, and crtI, which encodes phytoene desaturase. | + | <p><i>Saccharomyces cerevisiae</i> is a yeast commonly found in idli batter (Soni and Sandhu, 1989 and Nout, 2009). Though it doesn’t naturally produces ß-carotene, it has been shown that with the introduction of two carotenogenic genes from the carotenoid-producing ascomycete <i>Xanthophyllomyces dendrorhous</i>, <i>S. cerevisiae</i> could synthesize ß-carotene (Verwaal et al., 2007). These two genes are crtYB which codes for phytoene synthase and lycopene cyclase, and crtI, which encodes phytoene desaturase. |
− | <p>Additional overexpression of crtE (GGPP synthase) from X. dendrorhous, and an additional copy of a truncated 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene (tHMG1) from S. cerevisiae were both reported to increase the carotenoid production levels in S. cerevisiae (Verwaal et al., 2007). A more recent study also showed that ß-carotene synthesis in this yeast could also be increased with codon-optimization of crtI and crtYB, and by introducing the HMG-CoA reductase (mva) from Staphyloccocus aureus rather than the truncated HMG-CoA reductase (tHMG1) from S. cerevisiae (Li, 2013). | + | <p>Additional overexpression of crtE (GGPP synthase) from <i>X. dendrorhous</i>, and an additional copy of a truncated 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene (tHMG1) from <i>S. cerevisiae</i> were both reported to increase the carotenoid production levels in <i>S. cerevisiae</i> (Verwaal et al., 2007). A more recent study also showed that ß-carotene synthesis in this yeast could also be increased with codon-optimization of crtI and crtYB, and by introducing the HMG-CoA reductase (mva) from <i>Staphyloccocus aureus</i> rather than the truncated HMG-CoA reductase (tHMG1) from <i>S. cerevisiae</i> (Li, 2013). |
− | <br><p>The crtE, crtYB and crtI genes were designed in a single polycistronic construct, and synthesized as gBlocks. The gBlocks were then assembled with Gibson Assembly in an integrative vector that replicates in E. Coli, and integrates in the genome of S. | + | <br><p>The crtE, crtYB and crtI genes were designed in a single polycistronic construct, and synthesized as gBlocks. The gBlocks were then assembled with Gibson Assembly in an integrative vector that replicates in <i>E. Coli</i>, and integrates in the genome of <i>S. cerevisiae</i> at the HO locus. We then added an additional copy of the crtI gene, as well as the HMG-CoA reductase from <i>S. aureus</i>, also in the genome of <i>S. cerevisiae</i>, because both strategies have been reported to increase the vitamin A production. |
− | We wanted to produce as much ß-carotene as possible, so all the genes were codon-optimized for S. cerevisiae. | + | We wanted to produce as much ß-carotene as possible, so all the genes were codon-optimized for <i>S. cerevisiae</i>. |
<br><br> | <br><br> |
Revision as of 13:16, 14 August 2015