Difference between revisions of "Team:Aachen/Lab/Glycogen"
(6 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
− | <html | + | <html><div class="col-md-12"></html> |
{{Team:Aachen/ReadMore|title=Characte-rization|link=/Team:Aachen/Lab/Glycogen/Characterization|picture=rmStaining}} | {{Team:Aachen/ReadMore|title=Characte-rization|link=/Team:Aachen/Lab/Glycogen/Characterization|picture=rmStaining}} | ||
Line 11: | Line 11: | ||
<html></div><span style="color:transparent;line-heigth:0em;">a</span></html> | <html></div><span style="color:transparent;line-heigth:0em;">a</span></html> | ||
=Learn more= | =Learn more= | ||
+ | |||
+ | |||
<span style="color:transparent"> a </span> | <span style="color:transparent"> a </span> | ||
Line 23: | Line 25: | ||
==Our approach== | ==Our approach== | ||
− | To pave the way for an industrial process, we need to modify ''E. coli'' to produce high concentrations of glycogen. It has previously been shown that a knockout of one glycogen degradation enzyme leads to the accumulation of glycogen in the cells (Fig. 2) <ref name=" | + | To pave the way for an industrial process, we need to modify ''E. coli'' to produce high concentrations of glycogen. It has previously been shown that a knockout of one glycogen degradation enzyme leads to the accumulation of glycogen in the cells (Fig. 2) <ref name="sa"> Alonso-Casaju´s Nora et al. 2006. Glycogen Phosphorylase, the Product of the glgP Gene, Catalyzes Glycogen Breakdown by Removing Glucose Units from the Nonreducing Ends in Escherichia coli </ref>. To further improve the production of glycogen in ''E. coli'', we approached this problem in our project in two ways: |
Line 32: | Line 34: | ||
− | {{Team:Aachen/DoubleFigure|Aachen_glycogen metabolism adjusted.png|Aachen Glyogen accumulation of ∆glgP.png|title1= Figure 1 - Glycogen enzymes in ''E. coli'' |title2=Figure 2 - ∆''glgP'' ''E. coli'' cells|subtitle1=GlgC forms ADP-glucose from ATP and glucose-1-phosphate. The ADP-glucose is then used by GlgA which also serves as the starting particle through autophosphorylation. GlgB adds branches to the existing chains forming α-1,6-glycosidic bonds. GlgX degrades glycogen by cleaving α-1,6-glycosidic bonds whereas GlgP removes glucose units from the end of linear chains.|subtitle2= ''E. coli'' cells lacking ''glgP'' are shown. They accumulated glycogen in granules. By Alonso-Casaju´s Nora et al. 2006 <ref name=" | + | {{Team:Aachen/DoubleFigure|Aachen_glycogen metabolism adjusted.png|Aachen Glyogen accumulation of ∆glgP.png|title1= Figure 1 - Glycogen enzymes in ''E. coli'' |title2=Figure 2 - ∆''glgP'' ''E. coli'' cells|subtitle1=GlgC forms ADP-glucose from ATP and glucose-1-phosphate. The ADP-glucose is then used by GlgA which also serves as the starting particle through autophosphorylation. GlgB adds branches to the existing chains forming α-1,6-glycosidic bonds. GlgX degrades glycogen by cleaving α-1,6-glycosidic bonds whereas GlgP removes glucose units from the end of linear chains.|subtitle2= ''E. coli'' cells lacking ''glgP'' are shown. They accumulated glycogen in granules. By Alonso-Casaju´s Nora et al. 2006 <ref name="sa"> Alonso-Casaju´s Nora et al. 2006. Glycogen Phosphorylase, the Product of the glgP Gene, Catalyzes Glycogen Breakdown by Removing Glucose Units from the Nonreducing Ends in Escherichia coli </ref>|size=large}} |
<span style="color:transparent">a</span> | <span style="color:transparent">a</span> |
Latest revision as of 00:48, 19 September 2015