Difference between revisions of "Team:Aachen/Lab/Methanol/Characterization"
(→Mdh Characterization) |
Tschwanemann (Talk | contribs) (→Functionality of the expressed Mdh) |
||
(29 intermediate revisions by 5 users not shown) | |||
Line 13: | Line 13: | ||
<html></div></html> | <html></div></html> | ||
+ | After we created the constructs that express all genes seperately and in a polycistronic frame, we characterized the associated enzyme performances. | ||
− | + | ==Achievements== | |
− | + | {{Team:Aachen/Achievements| | |
− | + | * prooving enzyme expression on SDS-PAGEs | |
+ | * showing the enzyme activity of Mdh in varying strains under different conditions | ||
+ | * demonstrating the growth performance of a strain with the polycistronic methanol condensation plasmid to be better on high methanol concentrations compared to others | ||
+ | * performing a complex {{sup|13}}C labelling experiment | ||
+ | }} | ||
=Single Expression= | =Single Expression= | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
To check the heterologous expression of ''mdh'', ''hps'', ''phi'' and ''xpk'' in ''E.coli'', we inserted them into a vector downstream a strong lacI repressible T7 promoter. Therefore, we used the [http://parts.igem.org/wiki/index.php?title=Part:BBa_K1362091 pSB1A30] plasmid that was built by Team Heidelberg 2014<ref>[https://2014.igem.org/Team:Heidelberg/Parts#Backbones Backbone Collection of Team Heidelberg 2014]</ref>. In this vector, you find the BioBrick scar downstream the promoter. | To check the heterologous expression of ''mdh'', ''hps'', ''phi'' and ''xpk'' in ''E.coli'', we inserted them into a vector downstream a strong lacI repressible T7 promoter. Therefore, we used the [http://parts.igem.org/wiki/index.php?title=Part:BBa_K1362091 pSB1A30] plasmid that was built by Team Heidelberg 2014<ref>[https://2014.igem.org/Team:Heidelberg/Parts#Backbones Backbone Collection of Team Heidelberg 2014]</ref>. In this vector, you find the BioBrick scar downstream the promoter. | ||
Line 63: | Line 58: | ||
− | '''[[Team:Aachen/Notebook/Documentation/Methanol_Single_Expression|Laboratory Notebook]] of Single Expression'' | + | '''[[Team:Aachen/Notebook/Documentation/Methanol_Single_Expression|Laboratory Notebook]] of Single Expression''' |
− | + | ||
− | + | ||
=Mdh Characterization= | =Mdh Characterization= | ||
Line 101: | Line 94: | ||
− | To avoid the incorporation of the Mdh into inclusion bodies, the alternative ''E. coli'' strains SHuffle T7 Express and C43 were used. SHuffle T7 Express allows more efficient protein folding in the cytoplasm and lacks proteases whereas C43 allows the expression of toxic proteins. Additionally, cultivation at a lower temperature of | + | To avoid the incorporation of the Mdh into inclusion bodies, the alternative ''E. coli'' strains SHuffle T7 Express and C43 were used. SHuffle T7 Express allows more efficient protein folding in the cytoplasm and lacks proteases whereas C43 allows the expression of toxic proteins. Additionally, cultivation at a lower temperature of 30°C was tested. It was shown that all strains were able to grow on M9 medium, however, another test for the expression and localization of the Mdh did not reveal major differences between the strains. In every case the Mdh was still incorporated into inclusion bodies. |
==Functionality of the expressed Mdh== | ==Functionality of the expressed Mdh== | ||
Line 108: | Line 101: | ||
First, the different cells as well as their respective fragments and lysate supernatants were screened for formaldehyde production. The samples were taken 6 h after induction from shake flask cultures. Several cells, fragments and supernatants showed a production of formaldehyde but the Mdh activity in the intact cells was higher for each strain. | First, the different cells as well as their respective fragments and lysate supernatants were screened for formaldehyde production. The samples were taken 6 h after induction from shake flask cultures. Several cells, fragments and supernatants showed a production of formaldehyde but the Mdh activity in the intact cells was higher for each strain. | ||
− | The formaldehyde assay was repeated only with whole cells and additional samples taken 20 h after induction. Moreover, the assay was conducted not only at | + | The formaldehyde assay was repeated only with whole cells and additional samples taken 20 h after induction. Moreover, the assay was conducted not only at 37°C but also at 30°C. The GlgC expressing BL21 Gold was used as a negative control. Again, in several strains functional Mdh could be detected and some general conclusions could be drawn: |
* More formaldehyde was produced in the samples taken 6 h after induction | * More formaldehyde was produced in the samples taken 6 h after induction | ||
− | * Strains cultivated at | + | * Strains cultivated at 37°C show a stronger response than the same ones cultivated at 30°C |
− | * The assay works better and faster at an incubation temperature of | + | * The assay works better and faster at an incubation temperature of 37°C |
− | '''{{Team:Aachen/Figure|Aachen_Comparison_strains_@_different_conditions.png|title=Comparison of different strains at varying cultivation conditions. |subtitle=The highest activity could be shown in BL21 Gold (DE3) at a cultivation temperature of | + | '''{{Team:Aachen/Figure|Aachen_Comparison_strains_@_different_conditions.png|title=Comparison of different strains at varying cultivation conditions. |subtitle=The highest activity could be shown in BL21 Gold (DE3) at a cultivation temperature of 37°C in M9 in a sample taken 6 h after induction. Fluorescence measured at a gain of 75.|size=large}}''' |
− | By far the highest formaldehyde production was observed in the BL21 Gold (DE3) cells 6 h after induction cultivated at | + | By far the highest formaldehyde production was observed in the BL21 Gold (DE3) cells 6 h after induction cultivated at 37°C despite its formation of inclusion bodies. |
To show the significance of the production of formaldehyde the assay was conducted with the Mdh expressing BL21 Gold (DE3) cultivated in the [[Team:Aachen/Lab/Methanol/Characterization#Labeling_Experiment|labled methanol experiment]] along with the BL21 Gold (DE3) expressing GlgC as a negative control, both in multiple replicates. | To show the significance of the production of formaldehyde the assay was conducted with the Mdh expressing BL21 Gold (DE3) cultivated in the [[Team:Aachen/Lab/Methanol/Characterization#Labeling_Experiment|labled methanol experiment]] along with the BL21 Gold (DE3) expressing GlgC as a negative control, both in multiple replicates. | ||
− | {{Team:Aachen/Figure| | + | {{Team:Aachen/Figure|Aachen_Comparison_IGEM_vs_OHES_new.png|title=Formaldehyde formation during in vivo assay |subtitle= Expression of Mdh and glgC as a negative control (4.5 h after induction). Both constructs were incorporated in vector pSB1A30 and the BL21 strains were cultivated at 37°C. Each value is made from at least 35 replicates of each construct. Fluorescence measured at a gain of 100.|size=large}} |
The Mdh expression strain showed significantly more formaldehyde production indicating a functional expression of the Mdh. | The Mdh expression strain showed significantly more formaldehyde production indicating a functional expression of the Mdh. | ||
− | ==Proof of Mdh | + | ==Proof of Mdh Activity in Methanol Conversion Strain== |
As the Mdh represents the bottleneck of the whole MCC pathway we tested its activity in the strains with the polycistronic plasmid. For this the assay to detect formaldehyde first described by Nash was done with these strains. Whole cells, cell fragments and lysate supernatants were tested for the polycistronic strains. The highest formation of formaldehyde could be observed in the assay using whole cells. | As the Mdh represents the bottleneck of the whole MCC pathway we tested its activity in the strains with the polycistronic plasmid. For this the assay to detect formaldehyde first described by Nash was done with these strains. Whole cells, cell fragments and lysate supernatants were tested for the polycistronic strains. The highest formation of formaldehyde could be observed in the assay using whole cells. | ||
Line 138: | Line 131: | ||
==Conclusion & Discussion== | ==Conclusion & Discussion== | ||
− | The functional Mdh was successfully expressed in multiple strains. The strongest response in the formaldehyde assay was reached in BL21 Gold (DE3) cultivated at | + | The functional Mdh was successfully expressed in multiple strains. The strongest response in the formaldehyde assay was reached in BL21 Gold (DE3) cultivated at 37°C in M9 medium. Although inclusion bodies containing the Mdh are formed in BL21 Gold, a high activity in the intact cells could be observed. This suggests that either a sufficient amount of Mdh still remains functional and in solution or the enzymes on the surface of the inclusion bodies still have a catalytic activity. The fact that a higher activity is reached in whole cell samples compared to the cell fragments and the lysate supernatant might be due to the protective property of the intact cell membrane shielding the enzyme from the harsh assay conditions and keeping it in its native environment. |
Line 157: | Line 150: | ||
After successfully building strains that genetically meet all conditions to metabolize methanol, we wanted to examine the growth performance of a strain that carries the engineered constructs. | After successfully building strains that genetically meet all conditions to metabolize methanol, we wanted to examine the growth performance of a strain that carries the engineered constructs. | ||
− | The strain with the polycistronic plasmid behind J23119 promoter and the one expressing the Mdh in [http://parts.igem.org/wiki/index.php?title=Part:BBa_K1362091 pSB1A30] were cultivated on different media with varying concentrations of methanol. Our growth experiments were performed in shake flasks and | + | The strain with the polycistronic plasmid behind J23119 promoter and the one expressing the Mdh in [http://parts.igem.org/wiki/index.php?title=Part:BBa_K1362091 pSB1A30] were cultivated on different media with varying concentrations of methanol. Our growth experiments were performed in shake flasks and BioLectors <ref>http://www.m2p-labs.com/microbioreactor-biolector-gbl100</ref>. |
To measure the OD we used, among other things, the automated cell density monitoring devices of [http://www.aquila-biolabs.de Aquila Biolabs]. | To measure the OD we used, among other things, the automated cell density monitoring devices of [http://www.aquila-biolabs.de Aquila Biolabs]. | ||
Line 165: | Line 158: | ||
− | {{Team:Aachen/Figure|Aachen MeOH control growthrate.png|title=Influence of MeOH on maximal growth rate of pSBKRDP in BL21 Gold (DE3) |subtitle=Error bars indicate standart error of linear regression trough averages of log(backscatter); n=4; 750 µl cultivation in BioLector for 23 h at | + | {{Team:Aachen/Figure|Aachen MeOH control growthrate.png|title=Influence of MeOH on maximal growth rate of pSBKRDP in BL21 Gold (DE3) |subtitle=Error bars indicate standart error of linear regression trough averages of log(backscatter); n=4; 750 µl cultivation in BioLector for 23 h at 37°C with 900 rpm |size=large}} |
Next, we wanted to test the overall growth performance of our polycistronic plasmid in BL21 Gold (DE3). In this experiment, a strain with the polycistronic construct, the Mdh expression plasmid and a control were grown on M9 medium. The best growth could be detected for the strain with the four genes in a polycistronic frame. This findings surprised us because the burden of expressing the four genes should inhibit growth in comparison to strains with less additional overexpressed genes. In later attempts, this results could not be reproduced and the strain with the polycistronic version of the methanol conversion genes grew worst compared to the others. | Next, we wanted to test the overall growth performance of our polycistronic plasmid in BL21 Gold (DE3). In this experiment, a strain with the polycistronic construct, the Mdh expression plasmid and a control were grown on M9 medium. The best growth could be detected for the strain with the four genes in a polycistronic frame. This findings surprised us because the burden of expressing the four genes should inhibit growth in comparison to strains with less additional overexpressed genes. In later attempts, this results could not be reproduced and the strain with the polycistronic version of the methanol conversion genes grew worst compared to the others. | ||
− | {{Team:Aachen/Figure|Aachen 0Mcomparison.png|title=Comparison of polycistronic plasmid in pSB1KRDP, ''mdh'' in pSB1A30 and control on M9 medium without methanol|subtitle=All strains are BL21 Gold (DE3). The control carries an empty pSB1KRDP backbone; cultivation of 750 µl cell suspension in BioLector for 23 h at | + | {{Team:Aachen/Figure|Aachen 0Mcomparison.png|title=Comparison of polycistronic plasmid in pSB1KRDP, ''mdh'' in pSB1A30 and control on M9 medium without methanol|subtitle=All strains are BL21 Gold (DE3). The control carries an empty pSB1KRDP backbone; cultivation of 750 µl cell suspension in BioLector for 23 h at 37°C with 900 rpm; n=4|size=large}} |
− | Subsequently, we were able to show that the lag phase of a strain with our polycistronic construct | + | Subsequently, we were able to show that the lag phase of a strain with our polycistronic construct can be much shorter compared to a strain with the Mdh expression plasmid and a control with an empty pSB1KRDP backbone when it is grown on M9 medium with 1.6 M methanol. This amount of methanol equals 6.48 percent per volume of the fermentation broth. The polycistronic strain is the only one that grows at all on on this methanol concentration that actually is the highest concentration where we ever observed any growth. |
− | {{Team:Aachen/Figure|Aachen_1.6Mcomparison.png|title= Comparison of polycistronic plasmid in pSB1KRDP, ''mdh'' in pSB1A30 and control on M9 medium with 1.6 M methanol|subtitle=all strains are BL21 Gold (DE3). The control carries empty pSB1KRDP backbone; cultivation of 750 µl cell suspension in BioLector for 23 h at | + | {{Team:Aachen/Figure|Aachen_1.6Mcomparison.png|title= Comparison of polycistronic plasmid in pSB1KRDP, ''mdh'' in pSB1A30 and control on M9 medium with 1.6 M methanol|subtitle=all strains are BL21 Gold (DE3). The control carries empty pSB1KRDP backbone; cultivation of 750 µl cell suspension in BioLector for 23 h at 37°C with 900 rpm, n=4|size=large}} |
In a following shake flask experiment, we saw that the strain with the methanol conversion plasmid reaches in general lower OD values in its stationary phase. But in contrast to the control, the strain grows to the highest densities at the highest methanol concentrations that were used in this experiment. | In a following shake flask experiment, we saw that the strain with the methanol conversion plasmid reaches in general lower OD values in its stationary phase. But in contrast to the control, the strain grows to the highest densities at the highest methanol concentrations that were used in this experiment. | ||
Line 185: | Line 178: | ||
Even though strains with our polycistronic plasmid grow best on high methanol concentrations compared to the others, methanol in the medium still affects the performance of it a lot. The strain grows to the highest densities in the shortest time, when there is no methanol at all in the medium. The lowest growth rate was detected when it was grown on 1.6 M methanol. | Even though strains with our polycistronic plasmid grow best on high methanol concentrations compared to the others, methanol in the medium still affects the performance of it a lot. The strain grows to the highest densities in the shortest time, when there is no methanol at all in the medium. The lowest growth rate was detected when it was grown on 1.6 M methanol. | ||
− | Nevertheless, it is still remarkable that this strain has an exponential phase at all | + | Nevertheless, it is still remarkable that this strain has an exponential phase at all of these methanol concentrations. |
− | {{Team:Aachen/Figure|Aachen FlowerPlateSeries.png|title= Growth of polycistronic construct in BL21 Gold (DE3) at different methanol concentrations | subtitle= cultivation of 750 µl cell suspension in BioLector for 23 h at | + | {{Team:Aachen/Figure|Aachen FlowerPlateSeries.png|title= Growth of polycistronic construct in BL21 Gold (DE3) at different methanol concentrations | subtitle= cultivation of 750 µl cell suspension in BioLector for 23 h at 37°C with 900 rpm on M9 medium with methanol concentrations of 0.0 M, 0.75 M, 1.25 M and 1.6 M (n=4 [c: 0.0 / 1.25 M MeOH]; n=3 [c: 0.75 M MeOH/ c: 1.6 M MeOH])|size=large}} |
− | |||
− | |||
==Achievements== | ==Achievements== | ||
{{Team:Aachen/Achievements| | {{Team:Aachen/Achievements| | ||
− | * measuring | + | * measuring the toxicity of methanol on the growth rate of ''E. coli'' BL21 Gold (DE3) without any additional genes by calculating the respective growth rate |
* showing that the strain with the polycistronic methanol conversion plasmid was able to start growing on methanol concentrations when other strains were not | * showing that the strain with the polycistronic methanol conversion plasmid was able to start growing on methanol concentrations when other strains were not | ||
* demonstrating that the strain with the polycistronic construct does't grow to the same densities as control strains (probably due to the high burden of four addional expressed genes) | * demonstrating that the strain with the polycistronic construct does't grow to the same densities as control strains (probably due to the high burden of four addional expressed genes) | ||
− | * | + | * showing that the strain with the polycistronic plasmid shows an exponential growth phase at each tested methanol concentration |
}} | }} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
'''[[Team:Aachen/Notebook/Documentation/Methanol_Physiology|Laboratory Notebook]] of Physiology''' | '''[[Team:Aachen/Notebook/Documentation/Methanol_Physiology|Laboratory Notebook]] of Physiology''' | ||
Line 225: | Line 211: | ||
− | This really cool {{sup|13}}C labeling experiment was done at the research center ' | + | This really cool {{sup|13}}C labeling experiment was done at the research center 'Forschungszentrum Jülich', where [[Team:Aachen/Attributions#Instructors|Prof. Dr. Wiechert]] offered all necessary equipment and components to us. [[Team:Aachen/Attributions#Attributions|Jannick Kappelmann]] instructed two iGEM Team Aachen members (Jonas R. & Tobias S.) during the whole experiment. |
==Summary== | ==Summary== | ||
Line 235: | Line 221: | ||
{{Team:Aachen/Figure|Aachen_MCC.png|title=Methanol Condensation Cycle scheme|subtitle=Sugars are the first metabolites that will contain {{sup|13}}C if the pathway works successfully. The initial step is the assembly of formaldehyde.|size=small}} | {{Team:Aachen/Figure|Aachen_MCC.png|title=Methanol Condensation Cycle scheme|subtitle=Sugars are the first metabolites that will contain {{sup|13}}C if the pathway works successfully. The initial step is the assembly of formaldehyde.|size=small}} | ||
− | One of them was the [[ | + | |
+ | |||
+ | |||
+ | One of them was the [[Team:Aachen/Lab/Methanol/Polycistronic_Expression_Plasmid|polycistronic expression cassette]] and the other one was the ''mdh'' behind a IPTG inducable T7 promoter in pSB1A30. | ||
Different amounts of methanol were added to each reactor to make the polycistronic construct comparable with itself to generate more independent data. | Different amounts of methanol were added to each reactor to make the polycistronic construct comparable with itself to generate more independent data. | ||
Line 244: | Line 233: | ||
The MS-detection of cytosolic metabolites covered additionally DHAP, Xylulose-5-phosphate, Fructose-6-phosphate, E4P, 2Phosphoglycerat/3Phosphoglycerate, S7P, AMP & ADP. Nevertheless, these metabolites were not analysed because of natural isotope distributions, coelutions or too low concentrations. | The MS-detection of cytosolic metabolites covered additionally DHAP, Xylulose-5-phosphate, Fructose-6-phosphate, E4P, 2Phosphoglycerat/3Phosphoglycerate, S7P, AMP & ADP. Nevertheless, these metabolites were not analysed because of natural isotope distributions, coelutions or too low concentrations. | ||
+ | |||
+ | |||
+ | |||
+ | |||
{{Team:Aachen/Figure|Aachen_Reactors_overview_13C.jpg|title=Experimental Setup|subtitle=Four 200 ml reactors for cultivation in the {{sup|13}}C experiment.|size=small}} | {{Team:Aachen/Figure|Aachen_Reactors_overview_13C.jpg|title=Experimental Setup|subtitle=Four 200 ml reactors for cultivation in the {{sup|13}}C experiment.|size=small}} | ||
Line 273: | Line 266: | ||
* The same is valid for reactor 6 with (#AW9K#) our polycistronic construct with 0.3 M methanol. | * The same is valid for reactor 6 with (#AW9K#) our polycistronic construct with 0.3 M methanol. | ||
− | * Our [[Team:Aachen/Lab/Methanol/Characterization | + | * Our [[Team:Aachen/Lab/Methanol/Characterization#Mdh_Characterization|Mdh strain]] (#IGEM#) in [[Team:Aachen/Notebook/Documentation/Methanol_Labeling_Experiment#MS-Data_-_Reactor_7_.280.2C15M_MeOH_with_.7B.7Bsup.7C13.7D.7DC.29|reactor 7]] does not differ at all. |
==Conclusion & Discussion== | ==Conclusion & Discussion== |
Latest revision as of 15:52, 3 October 2015