Difference between revisions of "Team:Paris Bettencourt/Sustainability/Continuity"
Line 60: | Line 60: | ||
</p> | </p> | ||
− | <!-- | + | <!-- EXTENDABILITY --> |
<h2>An extendable system</h2> | <h2>An extendable system</h2> | ||
Line 71: | Line 71: | ||
<div class="column-right" style="width: 60%"> | <div class="column-right" style="width: 60%"> | ||
− | < | + | <a href="https://static.igem.org/mediawiki/2015/9/98/PB_framework_construction.png"> |
− | <img src="https://static.igem.org/mediawiki/2015/ | + | <img src="https://static.igem.org/mediawiki/2015/9/98/PB_framework_construction.png"/> |
+ | </a> | ||
</div> | </div> | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
− | <h2 id="the-chassis"> | + | |
+ | |||
+ | <h2 id="the-chassis">The chassis</h2> | ||
+ | Let us see how it works under the hood.<br/> | ||
Before addition of any metabolic pathways, this is what our empty chassis would look like. The following cassette is integrated in the chromosome. | Before addition of any metabolic pathways, this is what our empty chassis would look like. The following cassette is integrated in the chromosome. | ||
− | < | + | <br/> |
− | <img src="https://static.igem.org/mediawiki/2015/1/14/PB_chassis.png" /> | + | <br/> |
− | </ | + | <a href="https://static.igem.org/mediawiki/2015/1/14/PB_chassis.png"> |
− | < | + | <img src="https://static.igem.org/mediawiki/2015/1/14/PB_chassis.png" style="width:100%"/> |
+ | </a> | ||
+ | <br/> | ||
+ | <p>All proteins' coding regions are preceded by a Ribosome Binding Site and followed by a transcription terminator.</p> | ||
+ | <br/> | ||
+ | <br/> | ||
<p><img src="https://static.igem.org/mediawiki/2015/e/ee/PB_1.png"/> <strong>Constitutive promoter:</strong> Thanks to this promoter, a RNA transcript of the cassette will be produced until the first terminator is reached.</p> | <p><img src="https://static.igem.org/mediawiki/2015/e/ee/PB_1.png"/> <strong>Constitutive promoter:</strong> Thanks to this promoter, a RNA transcript of the cassette will be produced until the first terminator is reached.</p> | ||
Line 90: | Line 99: | ||
<p>Here are the four orthogonal Lox sites we used: | <p>Here are the four orthogonal Lox sites we used: | ||
− | <ul> | + | <ul style="font-size:13px"> |
<li><b>LoxP:</b> ATAACTTCGTATA<strong>ATGTATGC</strong>TATACGAAGTTAT</li> | <li><b>LoxP:</b> ATAACTTCGTATA<strong>ATGTATGC</strong>TATACGAAGTTAT</li> | ||
<li><b>Lox2272:</b> ATAACTTCGTATA<strong>AAGTATCC</strong>TATACGAAGTTAT</li> | <li><b>Lox2272:</b> ATAACTTCGTATA<strong>AAGTATCC</strong>TATACGAAGTTAT</li> | ||
Line 121: | Line 130: | ||
<li>The operon to be expressed,</li> | <li>The operon to be expressed,</li> | ||
<li>An attB sequence, orthogonal to the attP used for integration,</li> | <li>An attB sequence, orthogonal to the attP used for integration,</li> | ||
− | <li>A selection system.</li> | + | <li>A selection system (not depicted here for clarity).</li> |
</ul> | </ul> | ||
− | + | When the phage PhiC31 integrase is expressed, this plasmid will be integrated in the locus (<b>B</b>). The CRISPR-Cas9 system from <em>S. pyogenes</em> should work well for selecting the cells who integrated the plasmid(Jiang, Bikard 2013), as the attB contains the protospacer adjacent motif "NGG" next to the two central bases (Mojica 2009). It is therefore possible to kill the cells who still have an intact attB site, just by using CRISPR spacers targeting the following sequences: | |
− | <ul> | + | <ul style="font-size:13px"> |
<li>GCGGGTGCCAGGGCGTGCCCTTGGGCTCCC for killing cells who have not integrated anything in the first attB version,</li> | <li>GCGGGTGCCAGGGCGTGCCCTTGGGCTCCC for killing cells who have not integrated anything in the first attB version,</li> | ||
<li>GCGGGTGCCAGGGCGTGCCCCCGGGCTCCC, for the second attB version.</li> | <li>GCGGGTGCCAGGGCGTGCCCCCGGGCTCCC, for the second attB version.</li> | ||
</ul> | </ul> | ||
− | + | It has the advantage of leaving no scar, thus reducing the number of recombination sites present in the locus.<br/> | |
+ | After integration, the new cassette becomes a new part of the system (<b>C</b>). | ||
</p> | </p> | ||
</div> | </div> | ||
Line 134: | Line 144: | ||
<div class="column-right"> | <div class="column-right"> | ||
<a href="https://static.igem.org/mediawiki/2015/7/75/PB_landingpad.png"><img src="https://static.igem.org/mediawiki/2015/7/75/PB_landingpad.png" style="width:90%"/></a> | <a href="https://static.igem.org/mediawiki/2015/7/75/PB_landingpad.png"><img src="https://static.igem.org/mediawiki/2015/7/75/PB_landingpad.png" style="width:90%"/></a> | ||
− | < | + | <br/> |
</div> | </div> | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
Line 141: | Line 151: | ||
<h2 id="division-of-labour">Division of labour</h2> | <h2 id="division-of-labour">Division of labour</h2> | ||
− | <p>Now that the different genes have been added to the chassis, | + | <div class="column-left"> |
− | <div class=" | + | <p>Now that the different genes have been added to the chassis, it is time to see it in action.</p> |
− | <img src="https://static.igem.org/mediawiki/2015/6/65/PB_brainbow.png"/> | + | <p>The CRE recombinase will cut the LoxP sites in the middle, remove the region in-between, and join the two remaining halves of LoxP sites together (Nagy 2000). This only occurs if the overlap sequence are exactly identical (Missirlis 2006). This means that, in the picture of the right, only LoxP sites of same colour would recombine. Given the configuration of this system, any LoxP recombination event would result in the loss of several other LoxP site, in a such way that further recombinations are not possible.</p> |
+ | </div> | ||
+ | <div class="column-right"> | ||
+ | <a href="https://static.igem.org/mediawiki/2015/6/65/PB_brainbow.png"> | ||
+ | <img src="https://static.igem.org/mediawiki/2015/6/65/PB_brainbow.png" style="width:60%" align="middle"/> | ||
+ | </a> | ||
<p class="caption">https://static.igem.org/mediawiki/2015/6/65/PB_brainbow.png</p> | <p class="caption">https://static.igem.org/mediawiki/2015/6/65/PB_brainbow.png</p> | ||
</div> | </div> | ||
+ | <div style="clear:both"></div> | ||
+ | |||
<h3 id="chemical-absence-of-chemical">Chemical / Absence of chemical</h3> | <h3 id="chemical-absence-of-chemical">Chemical / Absence of chemical</h3> | ||
<h3 id="heat">Heat</h3> | <h3 id="heat">Heat</h3> | ||
Line 187: | Line 204: | ||
<ul> | <ul> | ||
<li>Mojica et al., 2009, "Short motif sequences determine the targets of the prokaryotic CRISPR defence system". Microbiology 155 (Pt 3): 733–740.</li> | <li>Mojica et al., 2009, "Short motif sequences determine the targets of the prokaryotic CRISPR defence system". Microbiology 155 (Pt 3): 733–740.</li> | ||
+ | <li>Jiang, Bikard et al., 2013. "RNA-guided editing of bacterial genomes using CRISPR-Cas systems", Nat Biotechnol. 2013 Mar;31(3):233-9.</li> | ||
+ | <li>Nagy et al., 2000. "Cre recombinase: the universal reagent for genome tailoring". Genesis 26 (2): 99–109. </li> | ||
+ | <li>Missirlis et al., 2006. "A high-throughput screen identifying sequence and promiscuity characteristics of the loxP spacer region in Cre-mediated recombination". BMC Genomics 7: 73. </li> | ||
</ul> | </ul> | ||
+ | |||
<h1>Attribution</h1> | <h1>Attribution</h1> | ||
This project was designed and accomplished by Antoine Vigouroux in consultation with Jason Bland and Ihab Boulas. | This project was designed and accomplished by Antoine Vigouroux in consultation with Jason Bland and Ihab Boulas. |
Revision as of 16:00, 18 September 2015