Difference between revisions of "Team:Paris Bettencourt/Modeling"

Line 9: Line 9:
 
<h3>Introduction</h3>
 
<h3>Introduction</h3>
  
Based on a set of ordinary differential equations (ODEs) describing the kinetics of the cells diffenrenciation, we design a model to find the best  
+
Based on a set of ordinary differential equations (ODE) describing the kinetics of the cells differentiation, we design a model to find the best  
diffenrenciation rate <i>ie</i> find the constant reaction k1 that optimize the vitamin production.
+
differentiation rate <i>ie</i> find the constant reaction \(k_{1}\) to optimize the vitamin production.
 +
<br />
 
<br />
 
<br />
 
We find out that a stochastic algorithm is an other solution to solve our problem.
 
We find out that a stochastic algorithm is an other solution to solve our problem.
 
<br />
 
<br />
For system involving large molecular counts, ODE model give an accurate representation of the behavior. But with small molecular counts, the stochastic and  
+
For system involving large cell counts, ODE model give an accurate representation of the behavior. But with small cell counts , the stochastic and  
discrete method have a significant influence on the observed behaviour.
+
discrete method has a significant influence on the observed behaviour.
 
<br />
 
<br />
For this reason we write a stochastic programm based on the Gillespie’s stochastic simulation algorithm (SSA) and obtain an accurate analysis.
+
These reasons led us to write a stochastic programm based on the Gillespie’s stochastic simulation algorithm (SSA). With this programm we obtain an accurate analysis.
 
<br />
 
<br />
  
Line 33: Line 34:
 
\[\frac{d[Vitamin]}{dt}(t) = k_{4}.[DC](t)\]
 
\[\frac{d[Vitamin]}{dt}(t) = k_{4}.[DC](t)\]
 
\[[Vitamin](t) = \int_{0}^{t}{[DC](t').dt'}\]
 
\[[Vitamin](t) = \int_{0}^{t}{[DC](t').dt'}\]
 +
<br />
  
 
<br />
 
<br />
 +
\[[MC](t) = [MC]_{0}.e^{(k_{2} - k_{1}).t}\]
 +
 +
<br />
 +
 +
\[
 +
[DC](t) =
 +
\begin{cases}
 +
[DC]_{0}.e^{k_{3}.t} + [MC]_{0}.\frac{k_{1}}{k_{2}-k_{1}-k_{3}}.(e^{(k_{2} - k_{1}).t} - e^{k_{3}.t}) & \mbox{if } k_{1} \ne k_{3} - k_{2}
 +
\\
 +
\\
 +
([MC]_{0}.(k_{2} - k_{3}).t + [DC]_{0}).e^{k_{3}.t} & \mbox{if } k_{1} = k_{3} - k_{2}
 +
\end{cases}
 +
\]
 +
 +
<br />
 +
 +
\[
 +
[Vitamin](t) =
 +
\begin{cases}
 +
[DC]_{0}.\frac{k_{4}}{k_{3}}.(e^{k_{3}.t} - 1) + [MC]_{0}.\frac{k_{4}.k_{1}}{(k_{2}-k_{1}-k_{3}).(k_{2} - k_{1})}.(e^{(k_{2} - k_{1}).t} - 1) + [MC]_{0}.\frac{k_{4}.k_{1}}{(k_{2}-k_{1}-k_{3}).k_{3}}.(1 - e^{k_{3}.t}) & \mbox{if } k_{1} \ne k_{3} - k_{2}
 +
\\
 +
\\
 +
[DC]_{0}.\frac{k_{4}}{k_{3}}.(e^{k_{3}.t} - 1) + [MC]_{0}.\frac{k_{4}}{k_{3}}.(k_{3}.t - 1).(\frac{k_{2}}{k_{3}} - 1).(e^{k_{3}.t} - 1) & \mbox{if } k_{1} = k_{3} - k_{2}
 +
\end{cases}
 +
\]
  
 
</html>
 
</html>
  
 
{{Paris_Bettencourt/footer}}
 
{{Paris_Bettencourt/footer}}

Revision as of 10:06, 14 August 2015

Kinetics Module

Introduction

Based on a set of ordinary differential equations (ODE) describing the kinetics of the cells differentiation, we design a model to find the best differentiation rate ie find the constant reaction \(k_{1}\) to optimize the vitamin production.

We find out that a stochastic algorithm is an other solution to solve our problem.
For system involving large cell counts, ODE model give an accurate representation of the behavior. But with small cell counts , the stochastic and discrete method has a significant influence on the observed behaviour.
These reasons led us to write a stochastic programm based on the Gillespie’s stochastic simulation algorithm (SSA). With this programm we obtain an accurate analysis.

Equations


\[MC \xrightarrow[]{k_{1}} DC\] \[MC \xrightarrow[]{k_{2}} 2.MC\] \[DC \xrightarrow[]{k_{3}} 2.DC\] \[DC \xrightarrow[]{k_{4}} DC + Vitamin\]

\[\frac{d[MC]}{dt}(t) = (k_{2} - k_{1}).[MC](t)\] \[\frac{d[DC]}{dt}(t) = k_{1}.[MC](t) + k_{3}.[DC](t)\] \[\frac{d[Vitamin]}{dt}(t) = k_{4}.[DC](t)\] \[[Vitamin](t) = \int_{0}^{t}{[DC](t').dt'}\]

\[[MC](t) = [MC]_{0}.e^{(k_{2} - k_{1}).t}\]
\[ [DC](t) = \begin{cases} [DC]_{0}.e^{k_{3}.t} + [MC]_{0}.\frac{k_{1}}{k_{2}-k_{1}-k_{3}}.(e^{(k_{2} - k_{1}).t} - e^{k_{3}.t}) & \mbox{if } k_{1} \ne k_{3} - k_{2} \\ \\ ([MC]_{0}.(k_{2} - k_{3}).t + [DC]_{0}).e^{k_{3}.t} & \mbox{if } k_{1} = k_{3} - k_{2} \end{cases} \]
\[ [Vitamin](t) = \begin{cases} [DC]_{0}.\frac{k_{4}}{k_{3}}.(e^{k_{3}.t} - 1) + [MC]_{0}.\frac{k_{4}.k_{1}}{(k_{2}-k_{1}-k_{3}).(k_{2} - k_{1})}.(e^{(k_{2} - k_{1}).t} - 1) + [MC]_{0}.\frac{k_{4}.k_{1}}{(k_{2}-k_{1}-k_{3}).k_{3}}.(1 - e^{k_{3}.t}) & \mbox{if } k_{1} \ne k_{3} - k_{2} \\ \\ [DC]_{0}.\frac{k_{4}}{k_{3}}.(e^{k_{3}.t} - 1) + [MC]_{0}.\frac{k_{4}}{k_{3}}.(k_{3}.t - 1).(\frac{k_{2}}{k_{3}} - 1).(e^{k_{3}.t} - 1) & \mbox{if } k_{1} = k_{3} - k_{2} \end{cases} \]