Difference between revisions of "Team:Paris Bettencourt/Modeling"
Line 9: | Line 9: | ||
<h3>Introduction</h3> | <h3>Introduction</h3> | ||
− | Based on a set of ordinary differential equations ( | + | Based on a set of ordinary differential equations (ODE) describing the kinetics of the cells differentiation, we design a model to find the best |
− | + | differentiation rate <i>ie</i> find the constant reaction \(k_{1}\) to optimize the vitamin production. | |
+ | <br /> | ||
<br /> | <br /> | ||
We find out that a stochastic algorithm is an other solution to solve our problem. | We find out that a stochastic algorithm is an other solution to solve our problem. | ||
<br /> | <br /> | ||
− | For system involving large | + | For system involving large cell counts, ODE model give an accurate representation of the behavior. But with small cell counts , the stochastic and |
− | discrete method | + | discrete method has a significant influence on the observed behaviour. |
<br /> | <br /> | ||
− | + | These reasons led us to write a stochastic programm based on the Gillespie’s stochastic simulation algorithm (SSA). With this programm we obtain an accurate analysis. | |
<br /> | <br /> | ||
Line 33: | Line 34: | ||
\[\frac{d[Vitamin]}{dt}(t) = k_{4}.[DC](t)\] | \[\frac{d[Vitamin]}{dt}(t) = k_{4}.[DC](t)\] | ||
\[[Vitamin](t) = \int_{0}^{t}{[DC](t').dt'}\] | \[[Vitamin](t) = \int_{0}^{t}{[DC](t').dt'}\] | ||
+ | <br /> | ||
<br /> | <br /> | ||
+ | \[[MC](t) = [MC]_{0}.e^{(k_{2} - k_{1}).t}\] | ||
+ | |||
+ | <br /> | ||
+ | |||
+ | \[ | ||
+ | [DC](t) = | ||
+ | \begin{cases} | ||
+ | [DC]_{0}.e^{k_{3}.t} + [MC]_{0}.\frac{k_{1}}{k_{2}-k_{1}-k_{3}}.(e^{(k_{2} - k_{1}).t} - e^{k_{3}.t}) & \mbox{if } k_{1} \ne k_{3} - k_{2} | ||
+ | \\ | ||
+ | \\ | ||
+ | ([MC]_{0}.(k_{2} - k_{3}).t + [DC]_{0}).e^{k_{3}.t} & \mbox{if } k_{1} = k_{3} - k_{2} | ||
+ | \end{cases} | ||
+ | \] | ||
+ | |||
+ | <br /> | ||
+ | |||
+ | \[ | ||
+ | [Vitamin](t) = | ||
+ | \begin{cases} | ||
+ | [DC]_{0}.\frac{k_{4}}{k_{3}}.(e^{k_{3}.t} - 1) + [MC]_{0}.\frac{k_{4}.k_{1}}{(k_{2}-k_{1}-k_{3}).(k_{2} - k_{1})}.(e^{(k_{2} - k_{1}).t} - 1) + [MC]_{0}.\frac{k_{4}.k_{1}}{(k_{2}-k_{1}-k_{3}).k_{3}}.(1 - e^{k_{3}.t}) & \mbox{if } k_{1} \ne k_{3} - k_{2} | ||
+ | \\ | ||
+ | \\ | ||
+ | [DC]_{0}.\frac{k_{4}}{k_{3}}.(e^{k_{3}.t} - 1) + [MC]_{0}.\frac{k_{4}}{k_{3}}.(k_{3}.t - 1).(\frac{k_{2}}{k_{3}} - 1).(e^{k_{3}.t} - 1) & \mbox{if } k_{1} = k_{3} - k_{2} | ||
+ | \end{cases} | ||
+ | \] | ||
</html> | </html> | ||
{{Paris_Bettencourt/footer}} | {{Paris_Bettencourt/footer}} |
Revision as of 10:06, 14 August 2015