Difference between revisions of "Team:Paris Bettencourt/Modeling"
Line 14: | Line 14: | ||
We find out that a stochastic algorithm is an other solution to solve our problem. | We find out that a stochastic algorithm is an other solution to solve our problem. | ||
<br /> | <br /> | ||
− | For system involving large cell counts, | + | For system involving large cell counts, the ordinary differential equations model give an accurate representation of the behavior. But with small cell counts , the |
stochastic and | stochastic and | ||
discrete method has a significant influence on the observed behaviour. | discrete method has a significant influence on the observed behaviour. | ||
Line 59: | Line 59: | ||
<br /> | <br /> | ||
\[ | \[ | ||
− | + | \begin{align} | |
\frac{d[MC]}{dt}(t) = (k_{2} - k_{1}).[MC](t) | \frac{d[MC]}{dt}(t) = (k_{2} - k_{1}).[MC](t) | ||
\\ | \\ | ||
\frac{d[DC]}{dt}(t) = k_{1}.[MC](t) + k_{3}.[DC](t) | \frac{d[DC]}{dt}(t) = k_{1}.[MC](t) + k_{3}.[DC](t) | ||
\\ | \\ | ||
− | \frac{d[Vitamin]}{dt}(t) = k_{4}.[DC](t) \Rightarrow [Vitamin](t) = \int_{0}^{t}{[DC](t').dt'} | + | \frac{d[Vitamin]}{dt}(t) = k_{4}.[DC](t) \Rightarrow [Vitamin](t) = k_{4}.\int_{0}^{t}{[DC](t').dt'} |
− | + | \end{align} | |
\] | \] | ||
Line 75: | Line 75: | ||
<br /> | <br /> | ||
\[ | \[ | ||
− | + | \begin{align} | |
[MC](t) = [MC]_{0}.e^{(k_{2} - k_{1}).t} | [MC](t) = [MC]_{0}.e^{(k_{2} - k_{1}).t} | ||
− | + | \end{align} | |
\] | \] | ||
Line 83: | Line 83: | ||
\[ | \[ | ||
− | + | \begin{align} | |
[DC](t) = | [DC](t) = | ||
\begin{cases} | \begin{cases} | ||
Line 91: | Line 91: | ||
([MC]_{0}.(k_{2} - k_{3}).t + [DC]_{0}).e^{k_{3}.t} & \mbox{if } k_{1} = k_{3} - k_{2} | ([MC]_{0}.(k_{2} - k_{3}).t + [DC]_{0}).e^{k_{3}.t} & \mbox{if } k_{1} = k_{3} - k_{2} | ||
\end{cases} | \end{cases} | ||
− | + | \end{align} | |
\] | \] | ||
Line 97: | Line 97: | ||
\[ | \[ | ||
− | + | \begin{align} | |
[Vitamin](t) = | [Vitamin](t) = | ||
\begin{cases} | \begin{cases} | ||
Line 107: | Line 107: | ||
\mbox{if } k_{1} = k_{3} - k_{2} | \mbox{if } k_{1} = k_{3} - k_{2} | ||
\end{cases} | \end{cases} | ||
− | + | \end{align} | |
\] | \] | ||
Line 118: | Line 118: | ||
<br /> | <br /> | ||
We try to find the best \(k_{1}\). We maximize the vitamin function numerically with MATLAB. | We try to find the best \(k_{1}\). We maximize the vitamin function numerically with MATLAB. | ||
+ | <br /> | ||
+ | <br /> | ||
+ | <br /> | ||
<br /> | <br /> | ||
<img src="https://static.igem.org/mediawiki/2015/4/45/OptimizeK1.png" alt="Optimization of k1" style="align:center;"> | <img src="https://static.igem.org/mediawiki/2015/4/45/OptimizeK1.png" alt="Optimization of k1" style="align:center;"> |
Revision as of 20:32, 14 August 2015