Difference between revisions of "Team:Paris Bettencourt/Modeling"
Line 53: | Line 53: | ||
<h5>Translation in ordinary differential equations</h5> | <h5>Translation in ordinary differential equations</h5> | ||
We use the law of mass action to write the ordinary differential equations based on equations \((1)\), \((2)\), \((3)\) and \((4)\). | We use the law of mass action to write the ordinary differential equations based on equations \((1)\), \((2)\), \((3)\) and \((4)\). | ||
+ | <br /> | ||
+ | We find the following equations. | ||
<br /> | <br /> | ||
\[ | \[ | ||
\begin{align} | \begin{align} | ||
\frac{d[MC]}{dt}(t) = (k_{2} - k_{1}).[MC](t) | \frac{d[MC]}{dt}(t) = (k_{2} - k_{1}).[MC](t) | ||
+ | \\ | ||
\\ | \\ | ||
\frac{d[DC]}{dt}(t) = k_{1}.[MC](t) + k_{3}.[DC](t) | \frac{d[DC]}{dt}(t) = k_{1}.[MC](t) + k_{3}.[DC](t) | ||
+ | \\ | ||
\\ | \\ | ||
\frac{d[Vitamin]}{dt}(t) = k_{4}.[DC](t) \Rightarrow [Vitamin](t) = k_{4}.\int_{0}^{t}{[DC](t').dt'} | \frac{d[Vitamin]}{dt}(t) = k_{4}.[DC](t) \Rightarrow [Vitamin](t) = k_{4}.\int_{0}^{t}{[DC](t').dt'} |
Revision as of 21:49, 14 August 2015