Difference between revisions of "Team:Paris Bettencourt/Modeling"
Line 172: | Line 172: | ||
We used more parameters than the deterministic model. Indeed, because of the nature of the algorithm, we need a constant rate probability distribution. | We used more parameters than the deterministic model. Indeed, because of the nature of the algorithm, we need a constant rate probability distribution. | ||
<br /> | <br /> | ||
− | In order to do a simulation with laboratory data, we modelize the time probability distribution with a normalized gaussian distribution using the < | + | In order to do a simulation with laboratory data, we modelize the time probability distribution with a normalized gaussian distribution using the <a style="font-weight:bold" href="http://fr.mathworks.com/help/stats/normrnd.html">normrnd</a> MATLAB function. |
<br /> | <br /> | ||
For each time distribution \(i\), we use the following time probability distribution : | For each time distribution \(i\), we use the following time probability distribution : | ||
Line 251: | Line 251: | ||
where | where | ||
<ul> | <ul> | ||
− | <li>\(r \in [0,1]\) : random number generated with the < | + | <li>\(r \in [0,1]\) : random number generated with the <a style="font-weight:bold" href="http://fr.mathworks.com/help/matlab/ref/rand.html">rand</a> MATLAB function.</li> |
<li>\(k_{i}\) : rate constant found in equation \((12)\).</li> | <li>\(k_{i}\) : rate constant found in equation \((12)\).</li> | ||
</ul> | </ul> | ||
Line 262: | Line 262: | ||
To do the choice, we compare \(T_{1}\) and \(T_{2}\). The smallest time is the next event time. | To do the choice, we compare \(T_{1}\) and \(T_{2}\). The smallest time is the next event time. | ||
<br /> | <br /> | ||
− | <img src=" | + | <img src="https://static.igem.org/mediawiki/2015/7/72/GeneralStochasticAlgorithm.png" height="420" style="float:right;" alt="Algorithm flowchart" title="Algorithm flowchart" > |
<h5>Step 1 : Initialize the cells</h5> | <h5>Step 1 : Initialize the cells</h5> | ||
Line 370: | Line 370: | ||
<br /> | <br /> | ||
<img width="100%" src="https://static.igem.org/mediawiki/2015/3/3c/CompareStochasticAndDeterministic.png" title="Comparison of deterministic and stochastic vitamin optimization" alt="Comparison of deterministic and stochastic vitamin optimization" style="align:center;"> | <img width="100%" src="https://static.igem.org/mediawiki/2015/3/3c/CompareStochasticAndDeterministic.png" title="Comparison of deterministic and stochastic vitamin optimization" alt="Comparison of deterministic and stochastic vitamin optimization" style="align:center;"> | ||
+ | <br /> | ||
+ | We performed cross-correlation and correlation coefficient between the two graphs with the <a style="font-weight:bold" href="http://fr.mathworks.com/help/signal/ref/xcorr.html">xcorr</a> and <a style="font-weight:bold" href="http://fr.mathworks.com/help/images/ref/corr2.html">corr2</a> MATLAB functions. | ||
+ | <img width="100%" src="https://static.igem.org/mediawiki/2015/7/76/CrossCorrelation.png" title="Deterministic and stochastic cross-correlation and correlation coefficients" alt="Deterministic and stochastic cross-correlation and correlation coefficients" style="align:center;"> | ||
+ | <br /> | ||
+ | As described in the <a href="http://fr.mathworks.com/help/images/ref/corr2.html">official MATLAB website</a>, the \(DC\) and \(Vitamin\) correlation coefficients are computed with the following formula. | ||
+ | <br /> | ||
+ | <br /> | ||
+ | \[ | ||
+ | \begin{align} | ||
+ | |||
+ | DC \phantom{t} correlation \phantom{t} coefficient = \frac{\sum\limits^{}_{k_{1}} (DC_{d}(k_{1}) - \overline{DC_{d}}).(DC_{s}(k_{1}) - \overline{DC_{s}})} | ||
+ | {\sqrt{\left(\sum\limits^{}_{k_{1}} (DC_{d}(k_{1}) - \overline{DC_{d}})^2 \right).\left(\sum\limits^{}_{k_{1}} (DC_{s}(k_{1}) - \overline{DC_{s}})^2 \right)}} | ||
+ | |||
+ | \end{align} | ||
+ | \] | ||
+ | |||
+ | <br /> | ||
+ | |||
+ | \[ | ||
+ | \begin{align} | ||
+ | |||
+ | Vitamin \phantom{t} correlation \phantom{t} coefficient = \frac{\sum\limits^{}_{k_{1}} (Vitamin_{d}(k_{1}) - \overline{Vitamin_{d}}).(Vitamin_{s}(k_{1}) - \overline{Vitamin_{s}})} | ||
+ | {\sqrt{\left(\sum\limits^{}_{k_{1}} (Vitamin_{d}(k_{1}) - \overline{Vitamin_{d}})^2 \right).\left(\sum\limits^{}_{k_{1}} (Vitamin_{s}(k_{1}) - \overline{Vitamin_{s}})^2 \right)}} | ||
+ | |||
+ | \end{align} | ||
+ | \] | ||
+ | |||
+ | <br /> | ||
+ | The \(DC\) and \(Vitamin\) cross-correlation are computed with these equations. | ||
+ | <br /> | ||
+ | <br /> | ||
+ | |||
+ | \[ | ||
+ | \begin{align} | ||
+ | |||
+ | DC \phantom{t} cross\text{-}correlation(k_{1}') = \sum\limits^{}_{k_{1}} DC_{d}(k_{1}).DC_{s}(k_{1} + k_{1}') | ||
+ | |||
+ | \end{align} | ||
+ | \] | ||
+ | |||
+ | \[ | ||
+ | \begin{align} | ||
+ | |||
+ | Vitamin \phantom{t} cross\text{-}correlation(k_{1}') = \sum\limits^{}_{k_{1}} Vitamin_{d}(k_{1}).Vitamin_{s}(k_{1} + k_{1}') | ||
+ | |||
+ | \end{align} | ||
+ | \] | ||
+ | |||
+ | where | ||
+ | <br /> | ||
+ | <ul> | ||
+ | <li>\(DC_{d}(k_{1})\) : deterministic \(DC\) function of \(k_{1}\).</li> | ||
+ | <li>\(DC_{s}(k_{1})\) : stochastic \(DC\) function of \(k_{1}\).</li> | ||
+ | <li>\(Vitamin_{d}(k_{1})\) : deterministic \(Vitamin\) function of \(k_{1}\).</li> | ||
+ | <li>\(Vitamin_{s}(k_{1})\) : stochastic \(Vitamin\) function of \(k_{1}\).</li> | ||
+ | </ul> | ||
<h3>Conclusion</h3> | <h3>Conclusion</h3> | ||
Line 379: | Line 435: | ||
<br /> | <br /> | ||
It is often the case when we computed the model with low \(MC_0\), for example \(MC_0 = 1\). It seems logical because of the statistical nature of the problem. | It is often the case when we computed the model with low \(MC_0\), for example \(MC_0 = 1\). It seems logical because of the statistical nature of the problem. | ||
− | |||
<br /> | <br /> | ||
However, the comparison of the two graphs give us useful and accurate informations about the vitamin optimization. | However, the comparison of the two graphs give us useful and accurate informations about the vitamin optimization. | ||
Line 386: | Line 441: | ||
<h3>MATLAB algorithm</h3> | <h3>MATLAB algorithm</h3> | ||
− | + | In order to make this model and code accessible, understandable and editable by everyone, we have ceated a <a>special wiki page</a>. | |
+ | <br /> | ||
+ | Feel free to download the source code, modified it and make it accessible for everyone. | ||
<h3>Bibliography</h3> | <h3>Bibliography</h3> |
Revision as of 15:23, 21 August 2015