Difference between revisions of "Team:Paris Bettencourt/Project/VitaminA"
Line 13: | Line 13: | ||
<h1 class="date two" id="design">Design</h1> | <h1 class="date two" id="design">Design</h1> | ||
− | To produce vitamin A in idli, a popular indian rice cake that is fermented, we chose to use the yeast <i>Saccharomyces cerevisiae</i> since it is commonly found in idli batter (Soni and Sandhu, 1989 and Nout, 2009). So it has a better chance to grow well and not affect the taste of idli than a yeast that isn’t normally present in the batter. Though <i>S. cerevisiae< | + | To produce vitamin A in idli, a popular indian rice cake that is fermented, we chose to use the yeast <i>Saccharomyces cerevisiae</i> since it is commonly found in idli batter (Soni and Sandhu, 1989 and Nout, 2009). So it has a better chance to grow well and not affect the taste of idli than a yeast that isn’t normally present in the batter. Though <i>S. cerevisiae</i> doesn’t naturally produces ß-carotene, it has been shown that with the introduction of two carotenogenic genes from the carotenoid-producing ascomycete <i>Xanthophyllomyces dendrorhous</i>, <i>S. cerevisiae</i> could synthesize ß-carotene (Verwaal et al., 2007). These two genes are crtYB which codes for phytoene synthase and lycopene cyclase, and crtI, which encodes phytoene desaturase. |
<p>Additional overexpression of crtE (GGPP synthase) from <i>X. dendrorhous</i>, and an additional copy of a truncated 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene (tHMG1) from <i>S. cerevisiae</i> were both reported to increase the carotenoid production levels in <i>S. cerevisiae</i> (Verwaal et al., 2007). A more recent study also showed that ß-carotene synthesis in this yeast could also be increased with codon-optimization of crtI and crtYB, and by introducing the HMG-CoA reductase (mva) from <i>Staphyloccocus aureus</i> rather than the truncated HMG-CoA reductase (tHMG1) from <i>S. cerevisiae</i> (Li, 2013).</div> | <p>Additional overexpression of crtE (GGPP synthase) from <i>X. dendrorhous</i>, and an additional copy of a truncated 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene (tHMG1) from <i>S. cerevisiae</i> were both reported to increase the carotenoid production levels in <i>S. cerevisiae</i> (Verwaal et al., 2007). A more recent study also showed that ß-carotene synthesis in this yeast could also be increased with codon-optimization of crtI and crtYB, and by introducing the HMG-CoA reductase (mva) from <i>Staphyloccocus aureus</i> rather than the truncated HMG-CoA reductase (tHMG1) from <i>S. cerevisiae</i> (Li, 2013).</div> | ||
Revision as of 20:00, 18 September 2015