Difference between revisions of "Team:Heidelberg/Modelling/aptakinetics"

 
(15 intermediate revisions by the same user not shown)
Line 35: Line 35:
 
</p>
 
</p>
 
<p class="basictext">
 
<p class="basictext">
Assuming an excess of $H_2O_3$ over luminol, the catalysis depends on the concentration of luminol reagent $R$ and the concentration of active enzymes. A low binding affinity of hemin $H$ to the unligated AptaBody $D$ leads to a certain concentration of hemin-bound DNA-AptaBodies $D_H$. In contrast, after binding to the ligand $L$, AptaBodies $D_{LH}$ are supposed to have a stronger affinity for hemin. Because both forms catalyse the luminol reaction, its time-dependent concentration change can be described by the equation: <br/>
+
Assuming an excess of $H_2O_3$ over luminol, the catalysis depends on the concentration of luminol reagent $R$ and the concentration of active enzymes. A low binding affinity of hemin $H$ to the unligated AptaBody $D$ leads to a certain concentration of hemin-bound DNA-AptaBodies $D_H$. In contrast, after binding to the ligand $L$, AptaBodies $D_{LH}$ are supposed to have a stronger affinity for hemin. Because both forms catalyse the luminol reaction, its time-dependent concentration change can be described by the equation: <br/> <br/>
$\frac{d[R]}{dt}=-k_{cat}[R](D_{H}+D_{LH}), $ <br/>
+
$\frac{d[R]}{dt}=-k_{cat}[R](D_{H}+D_{LH}), $ <br/> <br/>
in which $k_{cat}$ is the kinetic parameter for the catalysis. This equation can be solved to <br/>
+
in which $k_{cat}$ is the kinetic parameter for the catalysis. This equation can be solved to <br/> <br/>
 
$[R](t)=[R](t_{0})\exp\left(-k_{cat}(D_{H}+D_{LH})t\right)$.
 
$[R](t)=[R](t_{0})\exp\left(-k_{cat}(D_{H}+D_{LH})t\right)$.
 
</p>
 
</p>
 
<p class="basictext">
 
<p class="basictext">
 +
Because we are interested in the enzyme activities, this facilitates an elegant way of parameter estimations. Instead of fitting to time series of experimental data, which can be affected by noise and background signal, we only need to extract the decay constant of the signals. For this purpose, we fitted exponential functions:  $f(t)=a+exp(-bt)$ to the fluorescence signals from the AptaBody screening experiments and calculated enzyme activities. <br/> <br/>$b=k_{cat}(D_{H}+D_{LH})$, and half-lives of the signal $t_{\frac{1}{2}= \frac{ln2}{b}=\frac{\ln2}{k_{cat}(D_{H}+D_{LH})}}$.
 
</p>
 
</p>
 
<p class="basictext">
 
<p class="basictext">
 +
These enzyme activities were used for parameter estimations. In the following, the mathematical model shall be described.
 
</p>
 
</p>
 +
</div> <!-- col-lg-12 -->
 +
</div> <!-- row -->
 +
</div> <!-- panel-body -->
 +
</div> <!-- panel panel‐default -->
 +
</div> <!-- col-lg-12 -->
 +
</div> <!-- row -->
 +
</div> <!-- content -->
 +
</div> <!-- container -->
 +
</body>
 +
</html>
 +
<html>
 +
<head></head>
 +
<body>
 +
<div class="container">
 +
<div class="content">
 +
<div class="row">
 +
<div class="col-lg-12">
 +
<div class="panel panel‐default">
 +
<div class="panel‐heading">
 +
<h3 class="basicheader"> Modeling target binding of switchable AptaBodies </h3>
 +
</div> <!-- panel-heading -->
 +
<div class="panel‐body">
 +
<div class="row">
 +
<div class="col-lg-12">
 
<p class="basictext">
 
<p class="basictext">
</p>
+
To characterize the functionality of combinations of predicted aptamers and stems in switchable Aptabodies, our model describes binding of hemin $H$ and ligands $L$ to DNA-Aptabodies $D$, resulting in $D_L$, $D_H$ and $D_{LH}$. $D_H$ and $D_{LH}$ possess peroxidase activity and catalyze the luminol reaction (Figure 1). Table 1 shows the model equations. Therein, $k_L$ and $k_{-L}$ describe the binding and unbinding of the ligand $L$, $k_{H,D}$ and $k_{-H,D}$ binding and unbinding of hemin to the unligated AptaBody $D$, and $k_{H,D_L}$ and $k_{-H,D_L}$ of hemin to the ligand bound AptaBodies. Because a stronger enzymatic activity could be observed in the presence of the ligand, $k_{H,D_L}$ can be assumed to be larger than $k_{H,D}$.
<p class="basictext">
+
</p>
+
<p class="basictext">
+
</p>
+
<p class="basictext">
+
</p>
+
<p class="basictext">
+
 
</p>
 
</p>
 
</div> <!-- col-lg-12 -->
 
</div> <!-- col-lg-12 -->
Line 65: Line 84:
 
</html>
 
</html>
 
<html>
 
<html>
<head>
+
<head></head>
<title></title>
+
<body>
</head>
+
<body>
+
 
<div class="container">
 
<div class="container">
 
<div class="content">
 
<div class="content">
<p>
+
<div class="row">
<strong></strong></p>
+
<div class="col-lg-12">
<p>
+
<div class="panel panel‐default">
</p>
+
<div class="panel‐heading">
<p>
+
<h3 class="basicheader"> Modeling target binding of switchable AptaBodies </h3>
</p>
+
</div> <!-- panel-heading -->
<p>
+
<div class="panel‐body">
</p>
+
<div class="row">
<p>
+
<div class="col-lg-12">
\end{equation}</p>
+
<p>
+
Because we are interested in the enzyme activities, this facilitates an elegant way of parameter estimations. Instead of fitting to time series of experimental data, which can be affected by noise and background signal, we only need to extract the decay constant of the signals. For this purpose, we fitted exponential functions</p>
+
<p>
+
\begin{equation}</p>
+
<p>
+
f(t)=a+exp(-bt)</p>
+
<p>
+
\end{equation}</p>
+
<p>
+
to the fluorescence signals from the AptaBody screening experiments and calculated enzyme activities</p>
+
<p>
+
\begin{equation}</p>
+
<p>
+
b=k_{cat}(D_{H}+D_{LH})</p>
+
<p>
+
\end{equation}</p>
+
<p>
+
and half-lives of the signal</p>
+
<p>
+
\begin{equation}</p>
+
<p>
+
t_{\nicefrac{1}{2}= \frac{ln2}{b}=\frac{\ln2}{k_{cat}(D_{H}+D_{LH})}}.</p>
+
<p>
+
\end{equation}</p>
+
<p>
+
These enzyme activities were used for parameter estimations. In the following, the mathematical model shall be described.</p>
+
<p>
+
<strong>Modeling target binding of switchable AptaBodies</strong></p>
+
<p>
+
To characterize the functionality of combinations of predicted aptamers and stems in switchable Aptabodies, our model describes binding of hemin $H$ and ligands $L$ to DNA-Aptabodies $D$, resulting in $D_L$, $D_H$ and $D_{LH}$. $D_H$ and $D_{LH} possess peroxidase activity and catalyze the luminol reaction (Figure 1). Table 1 shows the model equations. Therein, $k_L$ and $k_{-L}$ describe the binding and unbinding of the ligand $L$, $k_{H,D}$ and $k_{-H,D}$ binding and unbinding of hemin to the unligated AptaBody $D$, and $k_{H,D_L}$ and $k_{-H,D_L} of hemin to the ligand bound AptaBodies. Because a stronger enzymatic activity could be observed in the presence of the ligand, $k_{H,D_L}$ can be assumed to be larger than $k_{H,D}$.</p>
+
<br clear="all" />
+
<p>
+
&nbsp;</p>
+
<p>
+
<img height="568" src="https://static.igem.org/mediawiki/2015/e/e1/Asdfgh12354.png" /></p>
+
<p>
+
Figure 1. The model for switchable AptaBodies describes ligand and hemin binding and enzyme catalysis. Reversible binding of the target ligand (L) and hemin (H) leads to $D_H$ and $D_{LH}$, which catalyze the reaction of the reporter (R) luminol, which creates the luminescence signal $h\nu$.</p>
+
<br clear="all" />
+
<p>
+
&nbsp;</p>
+
<p>
+
 
Table 1. Model equations describing <strong>target binding of switchable AptaBodies</strong></p>
 
Table 1. Model equations describing <strong>target binding of switchable AptaBodies</strong></p>
 
<table border="1" cellpadding="0" cellspacing="0">
 
<table border="1" cellpadding="0" cellspacing="0">
 
<tbody>
 
<tbody>
 
<tr>
 
<tr>
<td style="width:593px;">
+
<td>
 
<p>
 
<p>
\[</p>
+
$\frac{d[D]}{dt}=-k_{L}[L][D]+k_{-L}[D_{L}]-k_{H,D}[H][D]+k_{-H,D}[D_{H}]$ </p>
<p>
+
\frac{d[D]}{dt}=-k_{L}[L][D]+k_{-L}[D_{L}]-k_{H,D}[H][D]+k_{-H,D}[D_{H}]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
<td style="width:48px;">
 
<td style="width:48px;">
Line 140: Line 111:
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td style="width:593px;">
+
<td>
 
<p>
 
<p>
\[</p>
+
$\frac{d[D_{L}]}{dt}=k_{L}[L][D]-k_{-L}[D_{L}]-k_{H,D_{L}}[H][D_{L}]+k_{-H,D_{L}}[D_{LH}]$</p>
<p>
+
\frac{d[D_{L}]}{dt}=k_{L}[L][D]-k_{-L}[D_{L}]-k_{H,D_{L}}[H][D_{L}]+k_{-H,D_{L}}[D_{LH}]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
<td style="width:48px;">
+
<td>
 
<p>
 
<p>
 
(2)</p>
 
(2)</p>
Line 154: Line 121:
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td style="width:593px;">
+
<td>
 
<p>
 
<p>
\[</p>
+
$\frac{d[D_{H}]}{dt}=-k_{L}[L][D_{H}]+k_{-L}[D_{LH}]+k_{H,D}[H][D]-k_{-H,D}[D_{H}]$</p>
<p>
+
\frac{d[D_{H}]}{dt}=-k_{L}[L][D_{H}]+k_{-L}[D_{LH}]+k_{H,D}[H][D]-k_{-H,D}[D_{H}]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
<td style="width:48px;">
+
<td>
 
<p>
 
<p>
 
(3)</p>
 
(3)</p>
Line 168: Line 131:
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td style="width:593px;">
+
<td>
 
<p>
 
<p>
\[</p>
+
$\frac{d[D_{LH}]}{dt}=k_{L}[L][D_{H}]-k_{-L}[D_{LH}]+k_{H,D_{L}}[H][D_{L}]-k_{-H,D_{L}}[D_{LH}]$</p>
<p>
+
\frac{d[D_{LH}]}{dt}=k_{L}[L][D_{H}]-k_{-L}[D_{LH}]+k_{H,D_{L}}[H][D_{L}]-k_{-H,D_{L}}[D_{LH}]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
<td style="width:48px;">
+
<td>
 
<p>
 
<p>
 
(4)</p>
 
(4)</p>
Line 182: Line 141:
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td style="width:593px;">
+
<td>
 
<p>
 
<p>
\[</p>
+
$\frac{d[L]}{dt}=-k_{L}[L][D]+k_{-L}[D_{L}]-k_{L}[L][D_{H}]+k_{-L}[D_{LH}]$</p>
<p>
+
\frac{d[L]}{dt}=-k_{L}[L][D]+k_{-L}[D_{L}]-k_{L}[L][D_{H}]+k_{-L}[D_{LH}]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
<td style="width:48px;">
+
<td>
 
<p>
 
<p>
 
(5)</p>
 
(5)</p>
Line 196: Line 151:
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td style="width:593px;">
+
<td>
 
<p>
 
<p>
\[</p>
+
$\frac{d[H]}{dt}=-k_{H}[H][D]+k_{-H}[D_{H}]-k_{H,D_{L}}[H][D_{L}]+k_{-H,D_{L}}[D_{LH}]$</p>
<p>
+
\frac{d[H]}{dt}=-k_{H}[H][D]+k_{-H}[D_{H}]-k_{H,D_{L}}[H][D_{L}]+k_{-H,D_{L}}[D_{LH}]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
<td style="width:48px;">
+
<td>
 
<p>
 
<p>
 
(6)</p>
 
(6)</p>
Line 211: Line 162:
 
</tbody>
 
</tbody>
 
</table>
 
</table>
<p>
+
</div> <!-- col-lg-12 -->
&nbsp;</p>
+
</div> <!-- row -->
<p>
+
</div> <!-- panel-body -->
Because none of the interaction species is in excess, we have to include equations also for $L$ and $H$ and cannot assume constant concentrations. In experiments, we left a time interval of several minutes between the mixture of $H$, $D$ and $L$, and the addition of the luminol reagent $R$ to obtain a steady state before starting the luminol reaction. For parameter estimations, because we were only interested in the binding constants $K_L= k_{-L}/k_{L}$, $K_{H,D}= k_{-H,D}/k_{H,D}$ and $K_{H,D_L}= k_{-H,D_L}/k_{H,D_L}$, we fixed the unbinding parameters $k_{-L}$, $k_{-L}$ and $k_{-L}$ to one, together with preponing the integration start time for the ODE solver relative to the time of luminol addition. This procedure forces the model to a steady state before the addition of luminol.&nbsp; Then, sums of model variable values for $D_H$ and $D_{LH}$ can be fitted to values of experimentally determined enzyme activities. Therein, the parameter $k_{cat}$ is scaling factor between variables and measurements, which is estimated at the same time.</p>
+
</div> <!-- panel panel‐default -->
<p>
+
</div> <!-- col-lg-12 -->
We estimated parameters for three experimentally tested kanamycin aptamers included in AptaBodies, one of them with two different stems, and a literature Aptamer variant. Figure 2A shows that the model can well explain the experimental data. When fitting $k_{H,D}$ and $k_{H,D_L}$ at the same time, we observed that only $k_L$ values were identifiable. Therefore, we decided to only estimate the ratios $K_{H,D}/K_{H,D_L}$. We were particularly interested in these ratios because they reflect the affinity change for hemin binding that is caused by ligand binding. When fitting the ratios together with $k_L$, all parameters were identifiable, which was assessed by profile likelihood estimation (Table 2). In Figure 2B, $K_L=1/k_L$ and the $K_{H,D}/K_{H,D_L}$ ratios are visualized for all tested candidates.</p>
+
</div> <!-- row -->
<img src="https://static.igem.org/mediawiki/2015/thumb/6/6a/Asdfgh1253554.png/900px-Asdfgh1253554.png" style="width:100%;"
+
</div> <!-- content -->
 
+
</div> <!-- container -->
<p>
+
</body>
&nbsp;</p>
+
<p>
+
Table 2. Parameter estimates for switchable AptaBody candidates</p>
+
<table border="1" cellpadding="0" cellspacing="0">
+
<tbody>
+
<tr>
+
<td style="width:107px;">
+
<p>
+
candidate</p>
+
</td>
+
<td style="width:143px;">
+
<p>
+
parameter</p>
+
</td>
+
<td style="width:98px;">
+
<p>
+
best fit</p>
+
</td>
+
<td style="width:98px;">
+
<p>
+
lower CI</p>
+
</td>
+
<td style="width:98px;">
+
<p>
+
upper CI</p>
+
</td>
+
<td style="width:98px;">
+
<p>
+
%</p>
+
</td>
+
</tr>
+
<tr>
+
<td rowspan="2" style="width:107px;">
+
<p>
+
CGGGGGT, stem III</p>
+
<p>
+
&nbsp;</p>
+
</td>
+
<td style="width:143px;">
+
<p>
+
$k_L $ in $1/(s \muM)$</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0022</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0021</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0023</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
5,6</p>
+
</td>
+
</tr>
+
<tr>
+
<td style="width:143px;">
+
<p>
+
$K_{H,D}/K_{H,D_L}$</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
3,3977</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
3,3501</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
3,4524</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
3,0</p>
+
</td>
+
</tr>
+
<tr>
+
<td rowspan="2" style="width:107px;">
+
<p>
+
GCTGTCG, stem II</p>
+
<p>
+
&nbsp;</p>
+
</td>
+
<td style="width:143px;">
+
<p>
+
$k_L $ in $1/(s \muM)$</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0035</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,00212773</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0034</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0037</p>
+
</td>
+
</tr>
+
<tr>
+
<td style="width:143px;">
+
<p>
+
$K_{H,D}/K_{H,D_L}$</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,8702</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
3,35011103</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,8559</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,8772</p>
+
</td>
+
</tr>
+
<tr>
+
<td rowspan="2" style="width:107px;">
+
<p>
+
GCTGTCG, stem III</p>
+
<p>
+
&nbsp;</p>
+
</td>
+
<td style="width:143px;">
+
<p>
+
$k_L $ in $1/(s \muM)$</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,011</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,010</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0034</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0037</p>
+
</td>
+
</tr>
+
<tr>
+
<td style="width:143px;">
+
<p>
+
$K_{H,D}/K_{H,D_L}$</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,548</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,536</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,561</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,6</p>
+
</td>
+
</tr>
+
<tr>
+
<td rowspan="2" style="width:107px;">
+
<p>
+
CGGGGAT, stem V</p>
+
<p>
+
&nbsp;</p>
+
</td>
+
<td style="width:143px;">
+
<p>
+
$k_L $ in $1/(s \muM)$</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0070</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0088</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0121</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
46,7</p>
+
</td>
+
</tr>
+
<tr>
+
<td style="width:143px;">
+
<p>
+
$K_{H,D}/K_{H,D_L}$</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,4680</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,4123</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,4482</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
2,4</p>
+
</td>
+
</tr>
+
<tr>
+
<td rowspan="2" style="width:107px;">
+
<p>
+
KAN Aptamer Lit, stem IV</p>
+
</td>
+
<td style="width:143px;">
+
<p>
+
$k_L $ in $1/(s \muM)$</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0049</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0049</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
0,0059</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
20,7</p>
+
</td>
+
</tr>
+
<tr>
+
<td style="width:143px;">
+
<p>
+
$K_{H,D}/K_{H,D_L}$</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,2790</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,2625</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,2818</p>
+
</td>
+
<td style="width:98px;">
+
<p align="right">
+
1,5</p>
+
</td>
+
</tr>
+
</tbody>
+
</table>
+
<br clear="all" />
+
<p>
+
&nbsp;</p>
+
</body>
+
</div>
+
</div>
+
 
</html>
 
</html>
 
<html>
 
<html>
<head/>
+
<head></head>
 
<body>
 
<body>
 
<div class="container">
 
<div class="container">
    <div class="content">
+
<div class="content">
        <div class="row">
+
            <div class="col-lg-12">
+
                <div class="panel panel‐default" style="min-height:318px;">
+
                    <!-- panel-heading -->
+
                    <div class="panel‐body">
+
 
<div class="row">
 
<div class="row">
<div class="col-lg-12 basictext">
+
<div class="col-lg-12">
<div>
+
<div class="panel panel‐default">
<strong>Table 1:</strong>Model equations describing target binding of switchable AptaBodies
+
<div class="panel‐body">
 +
<div class="row">
 +
<div class="col-lg-12">
 +
<p class="basictext">
 +
Because none of the interaction species is in excess, we have to include equations also for $L$ and $H$ and cannot assume constant concentrations. In experiments, we left a time interval of several minutes between the mixture of $H$, $D$ and $L$, and the addition of the luminol reagent $R$ to obtain a steady state before starting the luminol reaction. For parameter estimations, because we were only interested in the binding constants $K_L= k_{-L}/k_{L}$, $K_{H,D}= k_{-H,D}/k_{H,D}$ and $K_{H,D_L}= k_{-H,D_L}/k_{H,D_L}$, we fixed the unbinding parameters $k_{-L}$, $k_{-L}$ and $k_{-L}$ to one, together with preponing the integration start time for the ODE solver relative to the time of luminol addition. This procedure forces the model to a steady state before the addition of luminol.&nbsp; Then, sums of model variable values for $D_H$ and $D_{LH}$ can be fitted to values of experimentally determined enzyme activities. Therein, the parameter $k_{cat}$ is scaling factor between variables and measurements, which is estimated at the same time.
 +
</p>
 +
<p class="basictext">
 +
We estimated parameters for three experimentally tested kanamycin aptamers included in AptaBodies, one of them with two different stems, and a literature Aptamer variant. Figure 2A shows that the model can well explain the experimental data. When fitting $k_{H,D}$ and $k_{H,D_L}$ at the same time, we observed that only $k_L$ values were identifiable. Therefore, we decided to only estimate the ratios $K_{H,D}/K_{H,D_L}$. We were particularly interested in these ratios because they reflect the affinity change for hemin binding that is caused by ligand binding. When fitting the ratios together with $k_L$, all parameters were identifiable, which was assessed by profile likelihood estimation (Table 2). In Figure 2B, $K_L=1/k_L$ and the $K_{H,D}/K_{H,D_L}$ ratios are visualized for all tested candidates.
 +
</p>
 +
</div> <!-- col-lg-12 -->
 +
<div class="col-lg-12">
 +
<div class="imagewrapper">
 +
<div class="imagewrapperimage">
 +
<img class="img-responsive" src="https://static.igem.org/mediawiki/2015/thumb/6/6a/Asdfgh1253554.png/900px-Asdfgh1253554.png">
 
</div>
 
</div>
\begin{align}
+
<div class="imagewrappercaption">
    \frac{d[D]}{dt}&=-k_{L}[L][D]+k_{-L}[D_{L}]-k_{H,D}[H][D]+k_{-H,D}[D_{H}]\\
+
    \frac{d[D_{L}]}{dt}&=k_{L}[L][D]-k_{-L}[D_{L}]-k_{H,D_{L}}[H][D_{L}]+k_{-H,D_{L}}[D_{LH}]\\
+
    \frac{d[D_{H}]}{dt}&=-k_{L}[L][D_{H}]+k_{-L}[D_{LH}]+k_{H,D}[H][D]-k_{-H,D}[D_{H}]\\
+
    \frac{d[D_{LH}]}{dt}&=k_{L}[L][D_{H}]-k_{-L}[D_{LH}]+k_{H,D_{L}}[H][D_{L}]-k_{-H,D_{L}}[D_{LH}]\\
+
    \frac{d[L]}{dt}&=-k_{L}[L][D]+k_{-L}[D_{L}]-k_{L}[L][D_{H}]+k_{-L}[D_{LH}]\\
+
    \frac{d[H]}{dt}&=-k_{H}[H][D]+k_{-H}[D_{H}]-k_{H,D_{L}}[H][D_{L}]+k_{-H,D_{L}}[D_{LH}]
+
\end{align}
+
 
</div>
 
</div>
 
</div>
 
</div>
 +
</div>
 +
</div> <!-- row -->
 +
</div> <!-- panel-body -->
 +
</div> <!-- panel panel‐default -->
 +
</div> <!-- col-lg-12 -->
 +
</div> <!-- row -->
 +
</div> <!-- content -->
 +
</div> <!-- container -->
 +
</body>
 +
</html>
 
<html>
 
<html>
<head>
+
<head></head>
<title></title>
+
<body>
</head>
+
<div class="container">
<body>
+
<div class="content">
<p>
+
<div class="row">
&nbsp;</p>
+
<div class="col-lg-12">
<p>
+
<div class="panel panel‐default">
Table 2. Parameter estimates for switchable AptaBody candidates</p>
+
<div class="panel‐body">
<table border="1" cellpadding="0" cellspacing="0">
+
<div class="row">
 +
<div class="col-lg-12">
 +
<p class="basictext">
 +
Table 2. Parameter estimates for switchable AptaBody candidates</p>
 +
</p>
 +
<p class="basictext">
 +
<table border="1" cellpadding="0" cellspacing="0">
 
<tbody>
 
<tbody>
 
<tr>
 
<tr>
Line 579: Line 260:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
$k_L $ in $1/(s \muM)$</p>
+
$k_L $ in $1/(s uM)$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 629: Line 310:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
$k_L $ in $1/(s \muM)$</p>
+
$k_L $ in $1/(s uM)$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 679: Line 360:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
$k_L $ in $1/(s \muM)$</p>
+
$k_L $ in $1/(s uM)$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 729: Line 410:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
$k_L $ in $1/(s \muM)$</p>
+
$k_L $ in $1/(s uM)$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 777: Line 458:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
$k_L $ in $1/(s \muM)$</p>
+
$k_L $ in $1/(s uM)$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 820: Line 501:
 
</tbody>
 
</tbody>
 
</table>
 
</table>
<br clear="all" />
+
</p>
<p>
+
</div> <!-- col-lg-12 -->
&nbsp;</p>
+
</div> <!-- row -->
</body>
+
</div> <!-- panel-body -->
</html>
+
</div> <!-- panel panel‐default -->
 
+
</div> <!-- col-lg-12 -->
 
+
</div> <!-- row -->
<script type="text/javascript">var bibfile = "</html>{{filepath:Heidelberg_citations_michael.txt|nowiki}}<html>".replace("&#58;",":");
+
</div> <!-- content -->
new Zitator(".basictext",bibfile).zitiere();
+
</div> <!-- container -->
</script>
+
</body>
 
</html>
 
</html>
{{Heidelberg/Footer}}
+
//

Latest revision as of 01:42, 2 October 2015

Assisting the optimization of switchable AptaBodies by mathematical modeling

In our project, several parts are based on the prediction of optimal aptamers for binding target molecules and for designing nucleotide stems in switchable AptaBodies that can sense their targets by creating peroxidase activity based on molecular dynamics simulations. To test predictions of optimal aptamers and nucleotide stems, we had developed a high-throughput method for quickly screening the function and the dose-response of switchable AptaBodies. In 96-wells, powers of ten in concentrations of target ligands are tested if they can accelerate the catalysis of luminol, which is detected by a luminescence camera. Here, we use the decay curves of the luminol signal to assess the function of switchable AptaBodies. In its switched-off state, a functional AptaBody does accelerate the luminol catalysis. Whereas, in its on-state, binding of the target changes the conformation of the hemin-binding quadruplex.  This facilitates the binding of hemin, increases the peroxidase activity and therefore accelerates the catalysis of luminol, which is visible by an accelerated decay of the signal.

Assuming an excess of $H_2O_3$ over luminol, the catalysis depends on the concentration of luminol reagent $R$ and the concentration of active enzymes. A low binding affinity of hemin $H$ to the unligated AptaBody $D$ leads to a certain concentration of hemin-bound DNA-AptaBodies $D_H$. In contrast, after binding to the ligand $L$, AptaBodies $D_{LH}$ are supposed to have a stronger affinity for hemin. Because both forms catalyse the luminol reaction, its time-dependent concentration change can be described by the equation:

$\frac{d[R]}{dt}=-k_{cat}[R](D_{H}+D_{LH}), $

in which $k_{cat}$ is the kinetic parameter for the catalysis. This equation can be solved to

$[R](t)=[R](t_{0})\exp\left(-k_{cat}(D_{H}+D_{LH})t\right)$.

Because we are interested in the enzyme activities, this facilitates an elegant way of parameter estimations. Instead of fitting to time series of experimental data, which can be affected by noise and background signal, we only need to extract the decay constant of the signals. For this purpose, we fitted exponential functions: $f(t)=a+exp(-bt)$ to the fluorescence signals from the AptaBody screening experiments and calculated enzyme activities.

$b=k_{cat}(D_{H}+D_{LH})$, and half-lives of the signal $t_{\frac{1}{2}= \frac{ln2}{b}=\frac{\ln2}{k_{cat}(D_{H}+D_{LH})}}$.

These enzyme activities were used for parameter estimations. In the following, the mathematical model shall be described.

Modeling target binding of switchable AptaBodies

To characterize the functionality of combinations of predicted aptamers and stems in switchable Aptabodies, our model describes binding of hemin $H$ and ligands $L$ to DNA-Aptabodies $D$, resulting in $D_L$, $D_H$ and $D_{LH}$. $D_H$ and $D_{LH}$ possess peroxidase activity and catalyze the luminol reaction (Figure 1). Table 1 shows the model equations. Therein, $k_L$ and $k_{-L}$ describe the binding and unbinding of the ligand $L$, $k_{H,D}$ and $k_{-H,D}$ binding and unbinding of hemin to the unligated AptaBody $D$, and $k_{H,D_L}$ and $k_{-H,D_L}$ of hemin to the ligand bound AptaBodies. Because a stronger enzymatic activity could be observed in the presence of the ligand, $k_{H,D_L}$ can be assumed to be larger than $k_{H,D}$.

Modeling target binding of switchable AptaBodies

Table 1. Model equations describing target binding of switchable AptaBodies

$\frac{d[D]}{dt}=-k_{L}[L][D]+k_{-L}[D_{L}]-k_{H,D}[H][D]+k_{-H,D}[D_{H}]$

(1)

$\frac{d[D_{L}]}{dt}=k_{L}[L][D]-k_{-L}[D_{L}]-k_{H,D_{L}}[H][D_{L}]+k_{-H,D_{L}}[D_{LH}]$

(2)

$\frac{d[D_{H}]}{dt}=-k_{L}[L][D_{H}]+k_{-L}[D_{LH}]+k_{H,D}[H][D]-k_{-H,D}[D_{H}]$

(3)

$\frac{d[D_{LH}]}{dt}=k_{L}[L][D_{H}]-k_{-L}[D_{LH}]+k_{H,D_{L}}[H][D_{L}]-k_{-H,D_{L}}[D_{LH}]$

(4)

$\frac{d[L]}{dt}=-k_{L}[L][D]+k_{-L}[D_{L}]-k_{L}[L][D_{H}]+k_{-L}[D_{LH}]$

(5)

$\frac{d[H]}{dt}=-k_{H}[H][D]+k_{-H}[D_{H}]-k_{H,D_{L}}[H][D_{L}]+k_{-H,D_{L}}[D_{LH}]$

(6)

Because none of the interaction species is in excess, we have to include equations also for $L$ and $H$ and cannot assume constant concentrations. In experiments, we left a time interval of several minutes between the mixture of $H$, $D$ and $L$, and the addition of the luminol reagent $R$ to obtain a steady state before starting the luminol reaction. For parameter estimations, because we were only interested in the binding constants $K_L= k_{-L}/k_{L}$, $K_{H,D}= k_{-H,D}/k_{H,D}$ and $K_{H,D_L}= k_{-H,D_L}/k_{H,D_L}$, we fixed the unbinding parameters $k_{-L}$, $k_{-L}$ and $k_{-L}$ to one, together with preponing the integration start time for the ODE solver relative to the time of luminol addition. This procedure forces the model to a steady state before the addition of luminol.  Then, sums of model variable values for $D_H$ and $D_{LH}$ can be fitted to values of experimentally determined enzyme activities. Therein, the parameter $k_{cat}$ is scaling factor between variables and measurements, which is estimated at the same time.

We estimated parameters for three experimentally tested kanamycin aptamers included in AptaBodies, one of them with two different stems, and a literature Aptamer variant. Figure 2A shows that the model can well explain the experimental data. When fitting $k_{H,D}$ and $k_{H,D_L}$ at the same time, we observed that only $k_L$ values were identifiable. Therefore, we decided to only estimate the ratios $K_{H,D}/K_{H,D_L}$. We were particularly interested in these ratios because they reflect the affinity change for hemin binding that is caused by ligand binding. When fitting the ratios together with $k_L$, all parameters were identifiable, which was assessed by profile likelihood estimation (Table 2). In Figure 2B, $K_L=1/k_L$ and the $K_{H,D}/K_{H,D_L}$ ratios are visualized for all tested candidates.

Table 2. Parameter estimates for switchable AptaBody candidates

candidate

parameter

best fit

lower CI

upper CI

%

CGGGGGT, stem III

 

$k_L $ in $1/(s uM)$

0,0022

0,0021

0,0023

5,6

$K_{H,D}/K_{H,D_L}$

3,3977

3,3501

3,4524

3,0

GCTGTCG, stem II

 

$k_L $ in $1/(s uM)$

0,0035

0,00212773

0,0034

0,0037

$K_{H,D}/K_{H,D_L}$

1,8702

3,35011103

1,8559

1,8772

GCTGTCG, stem III

 

$k_L $ in $1/(s uM)$

0,011

0,010

0,0034

0,0037

$K_{H,D}/K_{H,D_L}$

1,548

1,536

1,561

1,6

CGGGGAT, stem V

 

$k_L $ in $1/(s uM)$

0,0070

0,0088

0,0121

46,7

$K_{H,D}/K_{H,D_L}$

1,4680

1,4123

1,4482

2,4

KAN Aptamer Lit, stem IV

$k_L $ in $1/(s uM)$

0,0049

0,0049

0,0059

20,7

$K_{H,D}/K_{H,D_L}$

1,2790

1,2625

1,2818

1,5

//