Difference between revisions of "Team:Heidelberg/Modelling/rtsms"

 
(One intermediate revision by the same user not shown)
Line 18: Line 18:
  
 
<html>
 
<html>
<head>
+
<head></head>
<title></title>
+
<body>
</head>
+
<body>
+
 
<div class="container">
 
<div class="container">
 
<div class="content">
 
<div class="content">
<p>
+
<div class="row">
<strong>Studying determinants of polymerase efficiency based on an aptamer sensor</strong></p>
+
<div class="col-lg-12">
 +
<div class="panel panel‐default">
 +
<div class="panel‐heading">
 +
<h3 class="basicheader"> Studying determinants of polymerase efficiency based on an aptamer sensor </h3>
 +
</div> <!-- panel-heading -->
 +
<div class="panel‐body">
 +
<div class="row">
 +
<div class="col-lg-12">
 +
<p class="basictext">
 
<p>
 
<p>
 
<img src="https://static.igem.org/mediawiki/2015/5/5e/Asdfgh1253555554.png" style="width:10=%;">
 
<img src="https://static.igem.org/mediawiki/2015/5/5e/Asdfgh1253555554.png" style="width:10=%;">
Line 189: Line 195:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$\frac{d[P]}{dt}=-k_{on}[T][P]+k_{off}[T_{act}]-k_{deg,P}[P]$</p>
<p>
+
\frac{d[P]}{dt}=-k_{on}[T][P]+k_{off}[T_{act}]-k_{deg,P}[P]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 203: Line 205:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$[P](t)=[P](t_{0})\exp\left(-k_{deg,P}t\right)$</p>
<p>
+
[P](t)=[P](t_{0})\exp\left(-k_{deg,P}t\right)</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 217: Line 215:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$\frac{d[P]}{dt}=-k_{on}[T][P]+k_{off}[T_{act}]$</p>
<p>
+
\frac{d[P]}{dt}=-k_{on}[T][P]+k_{off}[T_{act}]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 237: Line 231:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$\frac{d[T]}{dt}=-k_{on}[T][P]+k_{off}[T_{act}]$</p>
<p>
+
\frac{d[T]}{dt}=-k_{on}[T][P]+k_{off}[T_{act}]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 251: Line 241:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$[T]=[T_{tot}]-[T_{act}]$</p>
<p>
+
[T]=[T_{tot}]-[T_{act}]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 271: Line 257:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$\frac{d[T_{act}]}{dt}=k_{on}[T][P]-k_{off}[T_{act}]$</p>
<p>
+
\frac{d[T_{act}]}{dt}=k_{on}[T][P]-k_{off}[T_{act}]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 285: Line 267:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$[T_{act}]=\frac{[T_{tot}][P]}{K_{d,P}}$</p>
<p>
+
[T_{act}]=\frac{[T_{tot}][P]}{K_{d,P}}</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 305: Line 283:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$\frac{d[A]}{dt}=-k_{syn}[A][T_{act}]-k_{deg,A}[A]$</p>
<p>
+
\frac{d[A]}{dt}=-k_{syn}[A][T_{act}]-k_{deg,A}[A]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 319: Line 293:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\frac{d[A]}{dt}=-k_{syn}\frac{[A][T_{act}]}{K_{m,T}+[T_{act}]}-k_{deg,A}[A]</p>
+
$\frac{d[A]}{dt}=-k_{syn}\frac{[A][T_{act}]}{K_{m,T}+[T_{act}]}-k_{deg,A}[A]$</p>
 
<p>
 
<p>
 
&nbsp;</p>
 
&nbsp;</p>
Line 331: Line 305:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$\frac{d[A]}{dt}=-k_{syn}[A][T_{act}]$</p>
<p>
+
\frac{d[A]}{dt}=-k_{syn}[A][T_{act}]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 351: Line 321:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$\frac{d[M]}{dt}=\frac{k_{syn}}{n_{A}}[A][T_{act}]$</p>
<p>
+
\frac{d[M]}{dt}=\frac{k_{syn}}{n_{A}}[A][T_{act}]</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 365: Line 331:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$\frac{d[M]}{dt}=\frac{k_{syn}}{n_{A}}\frac{[A][T_{act}]}{K_{m,T}+[T_{act}]}$</p>
<p>
+
\frac{d[M]}{dt}=\frac{k_{syn}}{n_{A}}\frac{[A][T_{act}]}{K_{m,T}+[T_{act}]}</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 379: Line 341:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$\frac{d[M]}{dt}=\frac{k_{syn}}{n_{A,0}\frac{[A]^{k}}{[T_{act}]^{l}}}[A][T_{act}]=\frac{k_{syn}}{n_{A,0}}[A]^{1-k}[T_{act}]^{1+j}$</p>
<p>
+
\frac{d[M]}{dt}=\frac{k_{syn}}{n_{A,0}\frac{[A]^{k}}{[T_{act}]^{l}}}[A][T_{act}]=\frac{k_{syn}}{n_{A,0}}[A]^{1-k}[T_{act}]^{1+j}</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 393: Line 351:
 
<td style="width:436px;">
 
<td style="width:436px;">
 
<p>
 
<p>
\[</p>
+
$\frac{d[M]}{dt}=\frac{k_{syn}}{n_{A,0}\frac{[A]}{[T_{act}]^{l}}}[A][T_{act}]=\frac{k_{syn}}{n_{A,0}}[T_{act}]^{1+j}$</p>
<p>
+
\frac{d[M]}{dt}=\frac{k_{syn}}{n_{A,0}\frac{[A]}{[T_{act}]^{l}}}[A][T_{act}]=\frac{k_{syn}}{n_{A,0}}[T_{act}]^{1+j}</p>
+
<p>
+
\]</p>
+
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 436: Line 390:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
k_{deg,A}</p>
+
$k_{deg,A}$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 458: Line 412:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
k_{deg,P}</p>
+
$k_{deg,P}$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 480: Line 434:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
k_{on,P}</p>
+
$k_{on,P}$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 502: Line 456:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
k_{off,P}</p>
+
$k_{off,P}$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 546: Line 500:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
k_{syn,M,P=1c_0}</p>
+
$k_{syn,M,P=1c_0}$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 568: Line 522:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
n_{A_0,P=1c_0}</p>
+
$n_{A_0,P=1c_0}$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 590: Line 544:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
k_{syn,M,P=0.5c_0}</p>
+
$k_{syn,M,P=0.5c_0}$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 612: Line 566:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
n_{A_0,P=0.5c_0}</p>
+
$n_{A_0,P=0.5c_0}$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 634: Line 588:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
k_{syn,M,P=0.1c_0}</p>
+
$k_{syn,M,P=0.1c_0}$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 656: Line 610:
 
<td style="width:143px;">
 
<td style="width:143px;">
 
<p>
 
<p>
n_{A_0,P=0.1c_0}</p>
+
$n_{A_0,P=0.1c_0}$</p>
 
</td>
 
</td>
 
<td style="width:98px;">
 
<td style="width:98px;">
Line 685: Line 639:
 
</div>
 
</div>
 
</div>
 
</div>
</body>
+
</p>
 +
</div> <!-- col-lg-12 -->
 +
</div> <!-- row -->
 +
</div> <!-- panel-body -->
 +
</div> <!-- panel panel‐default -->
 +
</div> <!-- col-lg-12 -->
 +
</div> <!-- row -->
 +
</div> <!-- content -->
 +
</div> <!-- container -->
 +
</body>
 
</html>
 
</html>
 
<html><head></head><body><div id="references"></div></body></html>
 
 
{{Heidelberg/Footer}}
 

Latest revision as of 01:50, 2 October 2015

Studying determinants of polymerase efficiency based on an aptamer sensor

Table 3 shows iterative steps, which lead to the refined model version  4. Further modifying this variant to the models 4a, 4b or 4c did not improve fit quality.

 

Table 3. Stepwise changes from the basic model to the optimal variant 4 and to simplifications of variant 4 to variants 4a to 4c

Model variant

Subsequent modifications relative to basic model or previous variant

Changes in fitting quality

1

Michaelis-Menten instead of linear kinetics for active template

no improvement

2

Individual $k_{syn}$ and $n_A$ values for different polymerase concentrations

improvement

3

$n_A$ depends on function of $T_{act}$ and $A$

$n_A=n_{A,0} A^{k} /T_{act}^{l}$

improvement, $k\approx0$

 

4, best model

Setting $k=0$

improvement

4a

No degradation of P in variant 4

decrease

4b

No degradation of A in variant 4

decrease

4c

Binding of $P$ to $T$ in steady state in variant 4

decrease

 


 

Table 4. Model equations for the basic model and Variants 1 to 4c

Model species

Variant

Equation

$P$

Basic model

Variants 1 to 4, 4c

$\frac{d[P]}{dt}=-k_{on}[T][P]+k_{off}[T_{act}]-k_{deg,P}[P]$

Variant 4a

$[P](t)=[P](t_{0})\exp\left(-k_{deg,P}t\right)$

Variant 4b

$\frac{d[P]}{dt}=-k_{on}[T][P]+k_{off}[T_{act}]$

$T$

Basic model

Variants 1 to 4, 4b, 4c

$\frac{d[T]}{dt}=-k_{on}[T][P]+k_{off}[T_{act}]$

Variant 4a

$[T]=[T_{tot}]-[T_{act}]$

$T_{act}$

Basic model

Variants 1 to 4, 4b, 4c

$\frac{d[T_{act}]}{dt}=k_{on}[T][P]-k_{off}[T_{act}]$

Variant 4a

$[T_{act}]=\frac{[T_{tot}][P]}{K_{d,P}}$

$A$

Basic model

Variants 2 to 4, 4a, 4b

$\frac{d[A]}{dt}=-k_{syn}[A][T_{act}]-k_{deg,A}[A]$

Variant 1

$\frac{d[A]}{dt}=-k_{syn}\frac{[A][T_{act}]}{K_{m,T}+[T_{act}]}-k_{deg,A}[A]$

 

Variant 4c

$\frac{d[A]}{dt}=-k_{syn}[A][T_{act}]$

$M$

Basic model,

Variant 2

$\frac{d[M]}{dt}=\frac{k_{syn}}{n_{A}}[A][T_{act}]$

Variants 1

$\frac{d[M]}{dt}=\frac{k_{syn}}{n_{A}}\frac{[A][T_{act}]}{K_{m,T}+[T_{act}]}$

Variant 3

$\frac{d[M]}{dt}=\frac{k_{syn}}{n_{A,0}\frac{[A]^{k}}{[T_{act}]^{l}}}[A][T_{act}]=\frac{k_{syn}}{n_{A,0}}[A]^{1-k}[T_{act}]^{1+j}$

Variants 4, 4a, 4b, 4c

$\frac{d[M]}{dt}=\frac{k_{syn}}{n_{A,0}\frac{[A]}{[T_{act}]^{l}}}[A][T_{act}]=\frac{k_{syn}}{n_{A,0}}[T_{act}]^{1+j}$

 


 

Table 5. Parameter estimates for switchable AptaBody candidates

parameter

best fit

lower CI

upper CI

%

$k_{deg,A}$

0,00001055

0,000009087

0,00001157

23,5

$k_{deg,P}$

0,000307

0,0002983

0,0003017

1,1

$k_{on,P}$

0,002639

0,0007579

0,0007629

0,2

$k_{off,P}$

0,002742

0,003122

0,003196

2,7

l

0,09085

0,07886

0,07999

1,2

$k_{syn,M,P=1c_0}$

0,06863

0,2054

0,2060

0,9

$n_{A_0,P=1c_0}$

126,67

126,4511826

127,8631277

3,2

$k_{syn,M,P=0.5c_0}$

0,02570

0,25683523

0,257400898

0,7

$n_{A_0,P=0.5c_0}$

425,8

421,0343254

428,7790799

5,8

$k_{syn,M,P=0.1c_0}$

0,5591

1,930027572

1,932774173

0,5

$n_{A_0,P=0.1c_0}$

293,5

159,0489132

Infinity

Infinity