Team:Heidelberg/Sandbox

Short introduction

Bacon ipsum dolor amet kielbasa ea boudin pig picanha anim. Jowl ullamco short ribs turducken enim in. Cillum shankle ut in t-bone meatball aliqua sed. Tempor ad non nostrud veniam chicken biltong meatball aliqua tri-tip lorem exercitation. Excepteur quis sausage irure incididunt andouille deserunt duis alcatra. Veniam fatback non, pork nisi dolor pancetta ullamco shank sed officia exercitation commodo. In tail eu exercitation, dolor pariatur capicola consequat.

Aliqua sausage turducken, reprehenderit culpa chicken capicola frankfurter spare ribs proident brisket porchetta. Bresaola in kevin corned beef, dolor aliquip consectetur. Porchetta pastrami beef ribs ex spare ribs pariatur corned beef alcatra kevin filet mignon laboris dolore jerky nulla. Cillum short ribs tongue laboris. Nulla adipisicing ut esse non ut veniam. Consectetur cupim jerky ullamco. Jerky brisket incididunt in.

Actual introduction

Aliqua xxdh001xx sausage turducken, reprehenderit culpa chicken capicola frankfurter spare ribs proident brisket porchetta. Bresaola in kevin corned beef, dolor aliquip consectetur. Porchetta pastrami beef ribs ex spare ribs pariatur corned beef alcatra kevin filet mignon laboris dolore jerky nulla. Cillum short ribs tongue laboris. Nulla adipisicing ut esse non ut veniam. Consectetur cupim jerky ullamco. Jerky brisket incididunt in. Turkey turducken dolor tempor tail, in sunt do kevin beef ribeye. Laborum frankfurter pig, consequat leberkas chicken drumstick ut short ribs. Pancetta magna voluptate sausage pork chop ut ipsum officia consectetur bresaola mollit beef ham hock quis deserunt. Sed magna sunt venison capicola boudin cow anim t-bone salami cupidatat kevin shoulder chuck. Landjaeger mollit swine, in meatball ut cupidatat sed jowl dolore tail laboris voluptate beef sirloin. Pork chop magna shoulder tempor pork. Pork chop tenderloin veniam venison pariatur nulla, ut quis sunt salami cupidatat adipisicing irure ribeye short ribs. Et do excepteur quis proident ipsum pork chop aliquip mollit prosciutto cow cillum. Turkey alcatra leberkas chicken ipsum dolor. Fugiat ea beef filet mignon tongue cow cupim ball tip voluptate eiusmod pork chop. Jerky leberkas boudin nostrud, ut ullamco aliqua frankfurter cupidatat pariatur labore.

Aliqua sausage turducken, reprehenderit culpa chicken capicola frankfurter spare ribs proident brisket porchetta. Bresaola in kevin corned beef, dolor aliquip consectetur. Porchetta pastrami beef ribs ex spare ribs pariatur corned beef alcatra kevin filet mignon laboris dolore jerky nulla. Cillum short ribs tongue laboris. Nulla adipisicing ut esse non ut veniam. Consectetur cupim jerky ullamco. Jerky brisket incididunt in. Turkey turducken dolor tempor tail, in sunt do kevin beef ribeye. Laborum frankfurter pig, consequat leberkas chicken drumstick ut short ribs. Pancetta magna voluptate sausage pork chop ut ipsum officia consectetur bresaola mollit beef ham hock quis deserunt. Sed magna sunt venison capicola boudin cow anim t-bone salami cupidatat kevin shoulder chuck. Landjaeger mollit swine, in meatball ut cupidatat sed jowl dolore tail laboris voluptate beef sirloin. Pork chop magna shoulder tempor pork. Pork chop tenderloin veniam venison pariatur nulla, ut quis sunt salami cupidatat adipisicing irure ribeye short ribs. Et do excepteur quis proident ipsum pork chop aliquip mollit prosciutto cow cillum. Turkey alcatra leberkas chicken ipsum dolor. Fugiat ea beef filet mignon tongue cow cupim ball tip voluptate eiusmod pork chop. Jerky leberkas boudin nostrud, ut ullamco aliqua frankfurter cupidatat pariatur labore.

Aliqua sausage turducken, reprehenderit culpa chicken capicola frankfurter spare ribs proident brisket porchetta. Bresaola in kevin corned beef, dolor aliquip consectetur. Porchetta pastrami beef ribs ex spare ribs pariatur corned beef alcatra kevin filet mignon laboris dolore jerky nulla. Cillum short ribs tongue laboris. Nulla adipisicing ut esse non ut veniam. Consectetur cupim jerky ullamco. Jerky brisket incididunt in. Turkey turducken dolor tempor tail, in sunt do kevin beef ribeye. Laborum frankfurter pig, consequat leberkas chicken drumstick ut short ribs. Pancetta magna voluptate sausage pork chop ut ipsum officia consectetur bresaola mollit beef ham hock quis deserunt. Sed magna sunt venison capicola boudin cow anim t-bone salami cupidatat kevin shoulder chuck. Landjaeger mollit swine, in meatball ut cupidatat sed jowl dolore tail laboris voluptate beef sirloin. Pork chop magna shoulder tempor pork. Pork chop tenderloin veniam venison pariatur nulla, ut quis sunt salami cupidatat adipisicing irure ribeye short ribs. Et do excepteur quis proident ipsum pork chop aliquip mollit prosciutto cow cillum. Turkey alcatra leberkas chicken ipsum dolor. Fugiat ea beef filet mignon tongue cow cupim ball tip voluptate eiusmod pork chop. Jerky leberkas boudin nostrud, ut ullamco aliqua frankfurter cupidatat pariatur labore. Aptabody

Important graph
Bacon ipsum dolor amet kielbasa ea boudin pig picanha anim.Jowl ullamco short ribs turducken enim in. Cillum shankle ut in t-bone meatball aliqua sed. Tempor ad non nostrud veniam chicken biltong meatball aliqua tri-tip lorem exercitation. Excepteur quis sausage irure incididunt andouille deserunt duis alcatra. Veniam fatback non, pork nisi dolor pancetta ullamco shank sed officia exercitation commodo. In tail eu exercitation, dolor pariatur capicola consequat.

Short introduction

“The sea is everything. […] The sea is the vast reservoir of Nature. The globe began with sea, so to speak”, Nemo said while the “Nautilus” was cruising with a school of hammerhead sharks deep beneath the waves.

And the captain was right. Deep in the ocean billions of years ago the miracle of nature took place as a pool of small molecules evolved to self-replicating lifeforms. The flagship role in this development was probably taken by the most versatile class of molecules in the history of life: RNA.

Seemingly random nucleotides happened to be in the right order to form the first biocatalysts that made life on the blue planet possible. Today we know those miracles of nature as ribozymes. Inspired by this, humanity took evolution into their own hands to create aptamers – nucleic acids capable of encaging molecules. This allows for the detection of virtually anything. Still this process has been tedious and time consuming much like fishing with a rod in an ocean. We want to revolutionize this former evolutionary process and want to make it swift like a shark tracking down its prey.

Yet to really bring out the strengths of these simple yet powerful molecules just comprised of A, U, C and G we want to combine aptamers and ribozymes to create a toolset for the synthetic biologist to create allosteric ribozymes able to sense a variety of molecules. Therefore, we hope to introduce the true origins of life and the capabilities of functional RNA to iGEM.

Join us as we sail forth into new waters of synthetic biology.

Further content

Test
Test
Notebook

Collecting impressions from the community

It’s done. We’ve finally decided upon a logo. It’s beautiful, it’s blue, it’s fishy *wink*. The next step was to choose a color scheme and a general style for the wiki. As we feared that our own ideas might be too similar we thought of asking a broader public how they would design a website based on our logo. In order to do so, we headed to the ’Neckarwiese’. During summer, a big part of Heidelbergs population decideds to go there and enjoy the sun, have a BBQ or just relax – so we caught them off guard.

We have had prepared a little presentatio with which we introduced them to iGEM and Synthetic Biology. Afterwards we explained them what we planned on doing, showed them our logo and asked, how they would design a website, based on what they’ve just heard. The general consens was to go for a blue theme, maybe add a little algae green and generally stick to maritime iconography. Unexpectedly we actually met someone who knew his stuff: Natalie, a student of the history of arts from Berlin. She gave us useful advice on how play with the different colors, what to avoid and even added a little touch of history to it. Lucky catch!

With fresh ideas we headed back to the lab and continued our experiments, being envious of all the people that could continue to sleep in the sun.

We’ve been lucky and actually met someone knowledgable in arts. Her name is Nati and she studies the history of art in Berlin.

Methods
Extension PCR Extension PCR was performed using Phusion Flash master mix with equimolar amounts of overlapping oligo DNA and 5 % DMSO.
In vitro Transcription dsDNA was transcribed into sRNA with T7 RNA polymerase in transcription buffer in the presence of 4 mM ATP, GTP, CTP, UTP each, 10 mM DTT and 5 % DMSO. Reaction was incubated at 37 °C for ~3 h. Then DNase I was added an the reaction was further incubated at 37 °C for 20 min. RNA of interested was purified in 10 % denaturing PAGE. Band were visualized by UV shadowing and appropriate band was excised and eluted using 0.3 M NaAc pH 5.5.
3’ Modifiction of sRNA Various amounts of sRNA (1-20 µM) were incubated with modified NTPs (150-400 µM) (Biotin-, Alkyne-, Azide-NTP) using either yeast Poly A Polymerase (PAP), affimetrix or Terminale dinucleotidyl Transferase (TdT), NEB in supplied buffers. Reaction was precipitated. Success was check via CuAAC.
Precipitation of nucleic acids RNA/DNA was precipitated in the presence of 0.3 M NaAc pH 5.5 at -20 °C by the addition of 2.5 volumes of -20 °C cold EtOH. After storing sample at –20 °C for at least 1.5 h is was centrifuged at 14,000 g. Supernatant was removed and pellet was dissolved in H2O. The concentration of the sample was determined using a NanoDrop and calculated using the extinction coefficient from idt oligoanalyzer.
Copper-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) Copper click reaction was performed as described in Winz, 2012. Success was check on denaturing PAGE that was first scanned in appropriate fluorescent mode and after staining with SYBR Gold in SYBR Gold mode on a Typhoon Scanner, GE.
Initial DNAzyme Activity DNAzyme activity was initially tested by incubating 0.5- 5 µM DNAzyme with 200nM Substrate in DNAzyme buffer at 37 °C for 1.5 h. Then 2 µL (to 25 µL reaction) were added and DNAzyme was digested for 20 min at 37 °C. Reaction was separated on 20 % denaturing PAGE and visualized with SYBR Gold.
Denaturing Polyacrylamid gel electrophorese (PAGE) Polyacrylamide gels were prepared using Rotiphorese Sequencing Gel System according to manual. Gel were run in TBE buffer. RNA or DNA was visualized by UV shadowing or SYBR Gold stain and scanning with a Typhoon Scanner, GE.
PCR PCR was performed using Phusion Flash Master Mix (Thermo Scientific), OneTaq® Quick-Load® 2X Master Mix (NEB), Q5® High-Fidelity 2X Master Mix (NEB) or Velocity DNA Polymerase (Bioline) according to manufacturer’s protocol.
PCR Purification PCR was purified using QIAquick PCR Purification kit from Qiagen according to manufacturer’s protocol.
Gel Extraction To extract DNA from agarose gel sample was run on a 0.8 % gel in TAE buffer. DNA was visualized under UV using EtBr. Suitable bands were excised and DNA was extracted using QIAquick Gel Extraction kit according to manufacturer’s protocol.
Agarose gel electrophorese To check the size of DNA fragments or to purify DNA samples were run on a 0.8-4 % agarose gel. To prepare the gel 0.8-4 % (w/v) agarose were heated in TAE or TBE buffer in the microwave. Gel was poured containing ethidium bromide or Roti Gel Stain and visualized by UV light.
Digest of DNA with restriction enzymes DNA was incubated with restriction enzyme in appropriate buffer and incubated as described in the manual. If necessary enzymes were heat inactivated and afterwards purified by precipitation or PCR purification kit.
Initial DNAzyme Activity DNAzyme activity was initially tested by incubating 0.5- 5 µM DNAzyme with 200nM Substrate in DNAzyme buffer at 37 °C for 1.5 h. Then 2 µL (to 25 µL reaction) were added and DNAzyme was digested for 20 min at 37 °C. Reaction was separated on 20 % denaturing PAGE and visualized with SYBR Gold.
Ligation DNA with matching sticky ends were ligated using T4 DNA Ligase in supplied buffer.
Cryostock of E. coli strain 500 µL of oN culture was mixed with 500 µL of autoclaved 40 % glycerol and stored at -80 °C.
Plasmid prep Plasmids were purified from liquid cultures using QIAprep Mini-, Midi or Maxiprep according to manufacturer’s protocol. Concentration was determined with a NanoDrop.
Restriction enzymes

____________________________________________________________

Enzyme Supplier
Organisms

____________________________________________________________

Organism Supplier
BL21(DE3) E. coli DiVentura Group
TOP10 E. coli DiVentura Group
BY4741 yeast strain Knop Lab
HEK 293T Cell Line human Grimm Lab
HeLa Cell Line human Eils Lab
Media

____________________________________________________________

Media Supplier
Backbones

__________________________________________________________________

Backbones Supplier
p415 GPD Knop Lab
p413 GPD Knop Lab
Buffer

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ __ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Name Detail
10x BSA Buffer 440 mM Tris HCl 8.1; 40 µg/ µL BSA; 2% v/v Glycerol; 300 mM KCl; 200 mM MgCl2
2x Loading Dye 95 % v/v Formamid; 5 % 10 x TBE Buffer (Roth); 1 Tip of a spatula of Bromphenol Blue and Xylenxylanol
10x Transcription Buffer 100 mM Spermidine 400 mM Tris HCl pH 8.1; 100 mM Spermidine; 220 mM MgCl2; 0.1 % Triton X
10x Transcription Buffer 10 mM Spermidine 400 mM Tris HCl pH 8.1; 10 mM Spermidine; 220 mM MgCl2; 0.1 % Triton X
10x Transcription Buffer w/o Spermidine 400 mM Tris HCl pH 8.1; 220 mM MgCl2; 0.1 % Triton X
10x Tris HCl/ KCl Buffer for in vitro transcription 440 mM Tris HCl pH 8.1; 300 mM KCl; 200 mM MgCl2
10x TBE Tris HCl; EDTA; Boric Acid
2x Renaturing Buffer 40 mM HEPES, pH 7.5; 125 mM KCl
DFHBI Solution 198 µl DMSO; 1 mg DFHBI
Software Libraries

____________________________________________________________

Libray Description
Python Python is a general purpose, interpreted, cross-platform, object-oriented, open-source programming language widely used in the scientific world.
OpenMM We used OpenMM for molecular simulation, specifically to compute the energy levels of given systems consisting of a ligand and an aptamere.
NumPy NumPy is a fundamental package for scientific computing with Python, version 1.9.2 has been used to hel us doing math.
Amber Amber is a toolkit for molecular diynamic computations.
pexpect pexpect is a Python module for handling child applications.
mpmath mpmath is a Python library for real and complex floating point arithmetic with arbitrary precicion.
zitator.js Developed to make online-citing easier
plasmid.js Developed to make plasmid maps interactive
dh001 GibsonmCherry fwd CGACGGTATCGATAAGCTTGATATCATGGTGAGCAAGGGCGAG
dh001 aGibsonmCherry fwd CCCGGGCTGCAGGAATTCATGGTGAGCAAGGGCGAG
dh002 GibsonmCherryrev tttttgttcGTCGAGCTTGTACAATTCGTCC
dh003 Gibsonctfrtestconstruct fwd aagctcgacGAACAAAAACTCATCTCAGAAGAGGA
dh004 Gibsonctfrtestconstruct rev cttggacatACCAGAACCACCCGTGATG
dh005 GibsonGFP fwd ggttctggtATGTCCAAGGGTGAAGAGCT
dh006 GibsonGFP rev CCCGGGCTGCAGGAATTCCTTATAAAGCTCGTCCATTCCGTG
dh006 aGibsonGFP rev CGACGGTATCGATAAGCTTGATATCCTTATAAAGCTCGTCCATTCCGTG
dh007 p413GPD fwd GATATCAAGCTTATCGATACCGTCG
dh008 p413GPD rev GAATTCCTGCAGCCCGGG
dh009 p413/415GPDsequencing fwd CGACGGATTCTAGAACTAGTGGATCC
dh010 p413/415GPDsequencing rev CTTTTCGGTTAGAGCGGATG
dh011 GFPpMaM fwd AAATAGCTCTTCACCCTTGGACAT
dh012 GFPpMaM rev CTTATAAAGCTCGTCCATTCCGT
dh013 CFTR x fwd GGATCCGGGAGACGTGG
dh014 CFTR1 T/A/C sc (site change) rev GCTAGCCTGGCACCAATGAACC
dh015 CFTR2 A/C sc (site change) rev GCTAGCCTTCTGGCACCAATGAAC
dh016 GFP1 fwd GGATCCGGGAGACG
dh017 GFP site change rev GCTAGCACCTGTTCCTTGGCC
dh018 seq 1rev cftrfrag(in fr) CGCCCTCACCTCTAACAG
dh018 amplif ins CFTR/21 fwd GGATCCAAAAAAAAAAGATATTTTCCTGATG
dh018 a amplif ins CFTR/21 fwd GATCAGGGATCCAAAAAAAAAAGATATTTTCCTGATG
dh019 seq 2fwd cftrfrag(in fr) AAGGCGATGCCACCAATGG
dh019 amplif ins CFTR1/2 rev GTCGACTAGATCTGTCCCATTC
dh020 GFPpMaM fwd + BamHI AAAGGATCCATGTCCAAGGGTGAAGAGC
dh020 amplif ins GFP1 fwd GGATCCAAAAAAAAAACGTAACCTG
dh020 a amplif ins GFP1 fwd GATCAGGGATCCAAAAAAAAAACGTAACCTG
dh021 GFPpMaM rev + EcoRI AAAGAATTCCTTATAAAGCTCGTCCATTCCG
dh021 amplif ins GFP1/2 rev GTCGACTAGATCTGTCCCATTC
dh022 amplif ins GFP2 fwd GGATCCAAAAAAAAAAGTTACCTGATG
dh022 a amplif ins GFP2 fwd GATCAGGGATCCAAAAAAAAAAGTTACCTGATG
dh023 cftrcestkostruktcherrygfp mut fwd GAAGCTGAAG GACGGCGACC ACT
dh024 cftrcestkostruktcherrygfp mut red CCTCAGCGTC GTAGTGGTCGCC
dh025 cftrcestkostruktcherrygfp bam fwd AGATCAGGATCC ATGGTGAGCAAGGGCG
dh026 cftrcestkostruktcherrygfp hind fwd AGATCAAAGCTT CTTATAAAGCTCGTCCATTCCGTG
dh027 insert cftr/gfp 1/2 amplif bgl ---- sal rev GTCGACTGTTATCTAGATCTGTCCCATTCGCCATTAC
dh027 a insert cftr/gfp 1/2 amplif bgl ---- sal rev GATCAGGTCGACTGTTATCTAGATCTGTCCCATTCGCCATTAC
dh028 ins CFTR2 P1 olig fw IVT TAATACGACTCACTATAGATATTTTCCTGATGAGGTCGCAAGACCGAAACGGTACGCCGTCGAAAATATCATCTAG
dh029 ins CFTR2 P1 olig rv IVT CTAGATGATATTTTCGACGGCGTACCGTTTCGGTCTTGCGACCTCATCAGGAAAATATCTATAGTGAGTCGTATTA
dh030 ins CFTR2 P2 olig fw IVT TAATACGACTCACTATAGTGTTTCCTATGGCCGGCATGCCGGCTGGGCAACATTCCGAGGGGACCGTCCCCTCGGTAATGGCGAATGGGAC
dh031 ins CFTR2 P2 olig rv IVT GTCCCATTCGCCATTACCGAGGGGACGGTCCCCTCGGAATGTTGCCCAGCCGGCATGCCGGCCATAGGAAACACTATAGTGAGTCGTATTA
dh032 Riboz CFTR2A fwd IVT TAATACGACTCACTATAGTGTATCTATATTCTAAATAGGACC
dh033 Riboz CFTR2C fwd IVT TAATACGACTCACTATAGTGTATCTATATTCTCAATAGGACC
dh034 Riboz CFTR2T fwd IVT TAATACGACTCACTATAGTGTATCTATATTCTTAATAGGACC
dh035 Riboz CFTR2 A/C/T rv IVT CTGGCACCAATGAACCAGGTAATG
dh035 Rib CFTR1 T/A/C fwd ATGTAGGATCCGGGAGACGTGG
dh036 Rib CFTR2 T fwd ATGTAGGATCCTGTATCTATATTCTTAATAGGAC
dh037 Rib CFTR2 A fwd ATGTAGGATCCTGTATCTATATTCTAAATAGGAC
dh038 Rib CFTR2 C fwd ATGTAGGATCCTGTATCTATATTCTCAATAGGAC
dh039 Rib CFTR1DE T/A/C fwd ATGTAGGATCCCTCCCCTGATGAG
dh040 Rib CFTR2 DE T/A/C fwd ATGTAGGATCCATACACTGATGAGGTC
dh041 Rib GFP1 DE fwd ATGTAGGATCCCTCCCCTGATGAG
dh042 Rib GFP2 DE fwd ATGTAGGATCCCCATACTGATGAGG
dh043 Rib GFP1 fwd ATGTAGGATCCGGGAGACGTGG
dh044 Rib GFP2 fwd ATGTAGGATCCTATGGTCTGGGTATC
dh045 Rib CFTR1 T/A/C rev ATGTAGCTAGCCTGGCACCAATGAAC
dh046 Rib CFTR2 T rev ATGTAGCTAGCCTGGCACCAATGAAC
dh047 Rib CFTR2 A/C rev ATGTAGCTAGCCTTCTGGCACCAATG
dh048 Rib CFTR/ GFP DE rev ATGTAGCTAGCGTCCCATTCGCC
dh049 Rib GFP 1/2 rev ATGTAGCTAGCACCTGTTCCTTGGC
dh050 cftrtestconstr fshift pac fwd AGTCATTAATTAAGAAATATCATCGGTGTTTCCTACGAC
dh051 cftrtestconstr fshift pac rev TATGATTAATTAATGGTGCCAGGCATACCAG
dh052 mutcorr p415gpd cftrtest fwd GTGGTTCTGGTGCACCACCATCAC
dh053 mutcorr p415gpd cftrtest rev GATGGTGATGGTGGTGCACCAGAAC
dh054 Fw CFTR 2 ins IVT pt 1 TAATACGACTCACTATAGATATTTTCCTGATGAGGTCGCAAG
dh055 Re CFTR 2 ins IVT pt 1 CTAGATGATATTTTCGACGGCGTAC
dh056 Fw CFTR 2 ins IVT pt 2 TAATACGACTCACTATAGTGTTTCCTATGGCCGGCATG
dh057 Re CFTR 2 ins IVT pt 2 GTCCCATTCGCCATTACCGAG
dh058 Ribozyme cftr target ivt fwd TAATACGACTCACTATA G ATGCCTGGCACCATTAAAGAAAATATC
dh059 Ribozyme cftr target ivt rev TCTGTATCTGTATTCGTCGTAGGAAAC
dh060 Splint p1+p2 cftr2 insert ATAGGAAACACCCTAGATGATATTTTC
dh061 mut bfp no SalI fwd CGGGTGTTTACTATGTAGACTACCG
dh062 mut bfp no SalI rev CGTTCCAGACGGTAGTCTACATAG
dh063 pIRES-U6 BB(Cftrtest) fwd GAATGGACGAGCTTTATAAG CTAGTAACGGCCGCCAGTG
dh064 pIRES-U6 BB(Cftrtest) rev TCCTCGCCCTTGCTCACCAT GCCCGGGCTAGAGCGG
dh065 pIRES-U6 Cftrtest(BB) fwd GCGGCCGCTCTAGCCCGGGC ATGGTGAGCAAGGGCGAGG
dh066 pIRES-U6 Cftrtest(BB) rev ACACTGGCGGCCGTTACTAG CTTATAAAGCTCGTCCATTCCGTG
dh067 pIRES-U6 BB(BFP) fwd GTCATAAACTGAATTAATAACTAGTAACGGCCGCCAGTG
dh068 pIRES-U6 BB(BFP) rev TCTTTGATCAGTTCGCTCATGCCCGGGCTAGAGCGG
dh069 pIRES-U6 BFP(BB) fwd GCGGCCGCTCTAGCCCGGGCATGAGCGAACTGATCAAAGAGAACAT
dh070 pIRES-U6 BFP(BB) rev ACACTGGCGGCCGTTACTAGTTATTAATTCAGTTTATGACCCAGCTTGC
dh071 pIRES-U6 lin BamHI fwd ATCAT GGATCC GGTGTTTCGTCCTTTCCACAAG
dh072 pIRES-U6 lin SalI rev ATCAT GTCGAC CATTTTTTCTCGAGCCCCAGCTG
dh073 SAFOR pIRES-U6 GACTACAAGGACGACGATGACAAG
dh074 SAREV pIRES-U6 CAACAGCTGGCCCTCGCAGACAGCG
dh075 ribseq pIRES-U6 fwd seq CTTGTGGAAAGGACGAAACACC
dh076 BFP fwd pac ATAGTTAATTAAATGAGCGAACTGATCAAAGAGAACAT
dh077 BFP rev Age I TAGAACCGGTTTAATTCAGTTTATGACCCAGCTTGC
dh078 CFTRtest fwd pac ATGCTTAATTAAATGGTGAGCAAGGGCGAGG
dh079 CFTRtest rev AgeI TAGAACCGGTCTTATAAAGCTCGTCCATTCCGTG
dh080 pIRES-U6 pac ATGATTAATTAAGCCCGGGCTAGAGCGG
dh080 a CFTRtest fwd pac ATGCTTAATTAAGAGCTCGGATCGATATCGCC
dh081 pIRES-U6 AgeI AGATACCGGTCTAGTAACGGCCGCCAGTG
dh082 Riboz CFTR2 A/C/T fwd IVT TAATACGACTCACTATA GGGAGACGTGGTATATTACCTG
dh083 Riboz CFTR2 A/C/T rev IVT CTGGCACCAATGAACCAGG
fs001 FwdFrag_T7-E GGGCTAATACGACTCACTATAGGAAGTTGTTATCACTTGTTACGTAAG
fs002 RevFrag_T7-E TAAGTTGCGGTCTCATACTTCAACCCATCCAAAGTGTTACTTACGTAACAAGTGATAAC
fs004 FwdFrag_T7-B-HHR GGGCTAATACGACTCACTATAGAGACCGCAACTTATACGGAAACGTACTG
fs005 RevFrag_T7-B-HHR CAACTTTTCGGCCTTTCGGCCTCATCAGTACGTTTCCGTATAAGT
fs008 fwd_T7-M1RNA (Tm 52,6; dG=-0.80) GGGCTAATACGACTCACTATAGGAAGCTGACCAGACAGTC
fs009 rev_M1RNA (Tm 54,8; dG=0.37) AGGTGAAACTGACCGATAAGC
fs010 fwd_T7-EGS-HHR GGCTAATACGACTCACTATAGGAGTAAGTTGCGGTCTCACCATCTACGGAAACGTACTGATGAGGCCG
fs011 rev_T7-EGS-HHR TCACCATCTTCGGCCTTTCGGCCTCATCAGTACGTTTCCGTAGATGG
fs013 fwd_gggc-T7-Promotor(Tm 51.7;dG=0) GGGCTAATACGACTCACTATAG
fs014 rev_T7-E_Joyce_MethodsinEnzymology(Tm50,4;dG=-0.80) TAAGTTGCGGTCTCATACT
fs015 rev_T7-B-HHR_Joyce_MethodsinEnzymology (Tm 52,1;dG=-0.20) CAACTTTTCGGCCTTTCG
fs016 rev_T7-EGS-HHR_Joyce_MethodsinEnzymology (Tm 52.6;dG=0) TCACCATCTTCGGCCTTTC
fs017 10-23D_FragA GGGCAAGGCTAGCTACAACGACTAAATTGGAGGAAGCTC
fs018 10-23D_FragB GAGCTGGAGGAAACGGCAGT
fs019 10-23DmLink GGGCAAGGCTAGCTACAACGACTAAATTGGAGGAAGCTTTTTTTTTGCTGGAGGAAACGGCAG
fs021 tscaf_f_label GGGCTAATACGACTCACTATAGGCGGCCGCGGGTCCAGGGTTCAAGTCCCTGTTCGGGCGCCA
fs022 10-23D_S_fwd GGGCTAATACGACTCACTATAGGTTTTTTTTTGACTGCCGTAGGTTGCCCG
fs023 10-23D_S_rev CGGCCGCTGCTCTACCGACTGAGCTATCCGGGCGGGCAACCTACGGCAGTCAAAAAAAAACC
fs024 tscaf_comp TGGCGCCCGAACAGGGACTTGAACCCTGGACCCGCGGCCGCCTATAGTGAGTCGTATTAGCCC
fs025 7-18D_FragA GGCAACTCCGAGCCGGACGAACGTTGGAGGAAGCTC
fs026 7-18D_FragB GAGCTGGAGGAAAAAGCAGTC
fs027 7-18DmLink GGCAACTCCGAGCCGGACGAACGTTGGAGGAAGCTTTTTTTTTGCTGGAGGAAAAAGCAGTC
fs028 7-18D_S_fwd GGGCTAATACGACTCACTATAGGTTTTTTTTTGACTGCCGTAGGTTGCCCG
fs029 10-23D_S_rev CGGCCGCTGCTCTACCGACTGAGCTATCCGGGCGGGCAACCTACGGCAGTCAAAAAAAAACC
fs030 splint_C GGGCAACCTACGGCAGTCAAAAAAAAACCCTGGCGCCCGAACAGGG
fs031 splint_U GGGCAACCTACGGCAGTCAAAAAAAAACCUTGGCGCCCGAACAGGG
fs032 10-23D GGGCAAGGCTAGCTACAACGACTACGGCAG
fs033 7-18D GGCAACTCCGAGCCGGACGAACGGCAGTC
fs038 S_rev+AULinker AAAATTAAATCGGCCGCTGCTCTACCGACTGAGCTATCCGGGCGGGCAACCTACGGCAGTCAAAAAAAAACC
fs039 S_AULink_rev AAAATTAAATCGGCCGCTGCTCTACC
fs040 assembly fwd ATTTCTGGAATTCGCGGCCGCTTCTAGAGGATATCGCGCGCTAATACGACTCACTATAGGGCCGGCATGGTCCCAGCCTCCTCGCTGGCG
fs041 assembly rev GGCCGCTACTAGTAGATATCGTCCCATTCGCCATTACCGAGGGGACGGTCCCCTCGGAATGTTGCCCAGCCGGCGCCAGCGAGGAGGCTGGGACCATGC
fs042 extraction fwd GATATCGCGCGCTAATACGACTCACTATAG
fs043 extraction rev GATATCGTCCCATTCGCCATTACCGAGG
fs044 linearization fwd CATGGTCCCAGCCTCCTCGC
fs045 linearization rev CTATAGTGAGTCGTATTAGCGCGCGATATC
fs046 Spinach-Primer fwd GATATCGCGCGCTAATACGACTCACTATAGATGTAACTGAATGAAATGGTGAAGGACGGGTCCAGTAGGCTGCTTCGGCAGCCTACTTG
fs047 Spinach-Primer rev GCGAGGAGGCTGGGACCATGCCGGCCGATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAGTAGGCTGCCGAAGCAGCCTACTGG
fs049 HRP_DNALink GGGTAGGGCGGGTTGGGAAAAA
fs050 SubsHRPDNA GGGCTAATACGACTCACTATAGGAAAAAAGACTGCCGTAGGTTGCCCAAAAA
fs051 SubsHRPDNArev TTTTTGGGCAACCTACGGCAGTCTTTTTTCCTATAGTGAGTCGTATTAGCCC
fs052 SplintHRPDNA CTTTTTCCTTTTTTC
fs053 tscaf_LabelAU GGGCTAATACGACTCACTATAGGCGGCCGCGGGTCCAGGGTTCAAGTCCCTGTTCGGGCGCCAGAAAAA
fs054 tscaf_labelAU comp TTTTTCTGGCGCCCGAACAGGGACTTGAACCCTGGACCCGCGGCCGCCTATAGTGAGTCGTATTAGCCC
hb001 GFPpMaM fwd + EcoRI GAATTCAAATAGCTCTTCACCCTTGGACAT
hb002 GFPpMaM rev + BamHI GGATCCCTTATAAAGCTCGTCCATTCCGT
hb003 GFPdelY fwd AGTAACAACGTTGACAGGTGTCCAATGTTTCTCAAGATACCC
hb004 GFPdelY rev AGAAACATTGGACACCTGTCAACGTTGTTACTAGGGTTGGCC
jd001 mTagBFP_fwd_Gibson ATGGAACAAAAACTTATTAGCGAAGAAGATCTTATGAGCGAACTGATCAAAGAG
jd002 mTagBFP_rev_Gibson CAAAGTCTTGACGAAAATCTGCATATTCAGTTTATGACCCAGCTTGC
jd003 Ub_fwd_Gibson GCAAGCTGGGTCATAAACTGAATATGCAGATTTTCGTCAAGACTTTG
jd004 Ub_rev_Gibson GCTCTTCACCCTTGGACATAGAACCACCTCTTAGCCTTAGCAC
jd005 sfGFP_fwd_Gibson GTGCTAAGGCTAAGAGGTGGTTCTATGTCCAAGGGTGAAGAGC
jd006 sfGFP_rev_Gibson CGTGACATAACTAATTACATGACTCGAGTTATTACTTATAAAGCTCGTCCATTCCG
jd007 p415GPD_fwd_Gibson CGGAATGGACGAGCTTTATAAGTAATAACTCGAGTCATGTAATTAGTTATGTCACG
jd008 p415GPD_rev_Gibson AAGATCTTCTTCGCTAATAAGTTTTTGTTCCATGTCGACGGTATCGATAAGCTTG
jd022 GibsonfwdccdB CCCCCGGGCTGCAGGAATTCGATTGAGACCACTGGCTGTGTATAAGGGAGC
jd023 GibsonrevccdB GGTCGACGGTATCGATAAGCTTGATTGAGACCCGCGTGGATCCGGCTTACTAAAAG
jd024 Gibsonp415rev ATCGAATTCCTGCAGCCCGGGGG
jd025 Gibsonp415fwd ATCAAGCTTATCGATACCGTCGACCTCGAGTCATGTAATTAG
jd026 Gibsonmutationrev CAATGATACCGCGAGAGCCACGCTCACCGGCTCCAGATTTATC
jd027 Gibsonmutationfwd CCGGTGAGCGTGGCTCTCGCGGTATCATTG
jd029 umklonierungpcfwd TTTTGGTCTCTGATCCCCCGGGCTGCAGGAATTC
jd030 umklonierungpcrev TTTTGGTCTCTTCGACGGTATCGATAAGCTTGAT
jd031 ggexfwd1.1 AAGGTCTCACTCGCCTAACGAGAAACGGGACCACATGGTTCTTCTTGAGTTCGTAACAGC
jd031 ggexfwd1.2 GTTCATCCATACCATGGGTAATGCCGGCGGCTGTTACGAACTCAAGAAGAACCATGTGG
jd032 ggexref1.1 TTGGTCTCTTGATTTATTAAAGATCTTCTTCGCTAATCAGCTTTTGCTCTTTGTAGAG
jd032 ggexref1.2 CGGCATTACCCATGGTATGGATGAACTCTACAAAGAGCAAAAGCTGATTAGCGAAGAAG
jd033 RTmyc AAGATCTTCTTCGCTAATAAGTTTTTG
jd034 RTgfp CTTATAAAGCTCGTCCATTCCG
mj001 olig mcs extens fw GATCCGCTAGCAGATCTGTCGACA
mj002 olig mcs extens rv CTAGTGTCGACAGATCTGCTAGCG
mj003 olig pcat promoter fwd AATTCGCGGCCGCTTCTAGAGGGCACGTAAGAGGTTCCAACTTTCACCATAATGAAACATAG
mj004 olig pcat promoter rev GATCCTATGTTTCATTATGGTGAAAGTTGGAACCTCTTACGTGCCCTCTAGAAGCGGCCGCG
mj006 pSB1C3 seq fwd TGCCACCTGACGTCTAAGAA
mj007 pSB1C3 seq rev ATTACCGCCTTTGAGTGAGC
mj010 Splint CFTR 2 insert CLICK ATAGGAAACACCTTTGATGATATTTTC
mj011 Rev CFTR 2 insert CLICK pt 2 GUCCCAUUCGCCAUUACC
mj012 Rev CFTR 2 insert CLICK pt 1 AAAGAUGAUAUUUUCGACG
mj013 Fwd CFTR 2 insert CLICK pt 2 TAATACGACTCACTATAGTGTTTCCTATGGCCGG
mj014 Fwd CFTR 2 insert CLICK pt 1 TAATACGACTCACTATAGAUAUUUUCCUGAUGAGG
mj015 Rescue Primer CFRT I/II Rv CGCCAGCGAGGAGGCTGGGACCATGCCGGCCCTGG
mj016 Rescue Primer CFTR II insert Rv CGCCAGCGAGGAGGCTGGGACCATGCCGGCCATAGGAAAC
mj017 Rescue Primer CFTR I insert Rv CGCCAGCGAGGAGGCTGGGACCATGCCGGCCACCCTAG
mj018 Rescue Primer GFP I/II Rv CGCCAGCGAGGAGGCTGGGACCATGCCGGCCACCTG
mj019 Rescue Primer GFP II insert Rv CGCCAGCGAGGAGGCTGGGACCATGCCGGCCATTGAACACC
mj020 Rescue Primer GFP I insert Rv CGCCAGCGAGGAGGCTGGGACCATGCCGGCCACCATATGTC
mj021 Rescue Primer HDV Forward Insert/Ribozyme GTCCCAGCCTCCTCGCTGGCGCCGGCTGGGCAACATTCCG
mjz001 BR_HIS_linker_0 GCTATGGGTGGTCTGGTTGGGATTGGCCCCGGGAGCTGGCGGGTAGGGCGGGTTGGG
mjz002 BR_HIS_linker_A_3 GCTATGGGTGGTCTGGTTGGGATTGGCCCCGGGAGCTGGCAAAGGGTAGGGCGGGTTGGG
mjz003 BR_HIS_linker_A_5 GCTATGGGTGGTCTGGTTGGGATTGGCCCCGGGAGCTGGCAAAAAGGGTAGGGCGGGTTGGG
mjz004 BR_HIS_linker_A_10 GCTATGGGTGGTCTGGTTGGGATTGGCCCCGGGAGCTGGCAAAAAAAAAAGGGTAGGGCGGGTTGGG
mjz005 BR_HIS_linker_A_20 GCTATGGGTGGTCTGGTTGGGATTGGCCCCGGGAGCTGGCAAAAAAAAAAAAAAAAAAAAGGGTAGGGCGGGTTGGG
mjz006 BR_HIS_linker_A_20_LR GCTATGGGTGGTCTGGTTGGGATTGGCCCCGGGAGCTGGCAAAAAAAAAAAAAAAAAAAAGGGTAGGGCGGGTTGGGAAAAAAAAAAAAAAAAAAAAGCTATGGGTGGTCTGGTTGGGATTGGCCCCGGGAGCTGGC
mjz007 BR_HIS_II_linker_0 GTTTGCCGGTGGGCAGGTCTAGGGTCTGCTCGGGATTGCGGAGGAACATGCGTCGCAAACGGGTAGGGCGGGTTGGG
mjz008 BR_HIS_II_linker_A_3 GTTTGCCGGTGGGCAGGTCTAGGGTCTGCTCGGGATTGCGGAGGAACATGCGTCGCAAACAAAGGGTAGGGCGGGTTGGG
mjz009 BR_HIS_II_linker_A_5 GTTTGCCGGTGGGCAGGTCTAGGGTCTGCTCGGGATTGCGGAGGAACATGCGTCGCAAACAAAAAGGGTAGGGCGGGTTGGG
mjz010 BR_HIS_II_linker_A_10 GTTTGCCGGTGGGCAGGTCTAGGGTCTGCTCGGGATTGCGGAGGAACATGCGTCGCAAACAAAAAAAAAAGGGTAGGGCGGGTTGGG
mjz011 BR_HIS_II_linker_A_20 GTTTGCCGGTGGGCAGGTCTAGGGTCTGCTCGGGATTGCGGAGGAACATGCGTCGCAAACAAAAAAAAAAAAAAAAAAAAGGGTAGGGCGGGTTGGG
mjz012 BR_HIS_II_linker_A_10_LR GTTTGCCGGTGGGCAGGTCTAGGGTCTGCTCGGGATTGCGGAGGAACATGCGTCGCAAACAAAAAAAAAAAAAAAAAAAAGGGTAGGGCGGGTTGGGAAAAAAAAAAAAAAAAAAAAGTTTGCCGGTGGGCAGGTCTAGGGTCTGCTCGGGATTGCGGAGGAACATGCGTCGCAAAC
ms001 GGGCTAATACGACTCACTATAGGATGTAACTGAATGAAATGGTGAAGGACGGGTCCA
ms002 GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAGTAGGCTGCCGAAGCAGCCTACTGGACCCGTCCTTCACCATTTC
ms004 reverse EGS with 3' Hammerhead Ribozyme GAGCTCGTACCAGGTTTCGTCCTCACGGACTCATCAGACCGGAAAGCACATCCGGTGACCTGGTGAGACCGCAACTTACT
ms005 GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAACTGCCAAGGGCCTTTCGGCTGGTATTGGACCCGTCCTTCACCATTTC
ms006 GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAACTGCCAATGGCCTTTCGGCTGGTATTGGACCCGTCCTTCACCATTTC
ms007 forward T7 promotor with Spinach2 containing the c-di-GMP Aptamer GGGCTAATACGACTCACTATAGGATGTAACTGAATGAAATGGTGAAGGACGGGTCCACACGCACAGGGCAAACCATTCGAAAGAGTGGGACGCAAAGCCTCCGGCCTAAACCAGAAGACATGGTAGGTAGCGGGGTTACCGATGTTGTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATC
ms008 GATGTAACTAGTTACGGAGC
ms009 GGGCTAATACGACTCACTATAGG
ms010 reverse Spinach2 containing the c-di-GMP Aptamer Mutant GGGCTAATACGACTCACTATAGGATGTAACTGAATGAAATGGTGAAGGACGGGTCCACACGCACAGGGCAAACCGTTCGAAAGAGTGGGACGCAAAGCCTCCGGCCTAAACCAGAAGACATGGTAGGTAGCGGGGTTACCGATGTTGTTGAGTAGAGTGTGAGCTCCGTAACTAGTTACATC
ms011 GGGCTAATACGACTCACTATAGGGATCCGTCCTGATGAGTCCGTGAGGACGAAACGGTACCCGGTACCGTCGACGGGGAGTAAGTTGCGGTCTCACCA
ms011 (13)_reverse ATP Aptamer GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAACACATGGACTCCTTCCATGTAGCTCCCGTAAGAGCCCTGAGATCCGTAGATCTCCCTGGACCCGTCCTTCACCATTTC
ms011 reverse Spinach2 containing the ATP Aptamer GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAACACATGGACTCCTTCCATGTAGCTCCCGTAAGAGCCCTGAGATCCGTAGATCTCCCTGGACCCGTCCTTCACCATTTC
ms012 GAGCTCGTACCAGGTTTCGTCCTCACGGACTCATCAGACCGGAAAGCACATCCGGTGACCTGGTGAGACCGCAACTTACT
ms012 reverse ATP Spinach with computer generated stem 1 GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAGGGCAAAGACACATGGACTCCTTCCATGTAGCTCCCGTAAGAGCCCTGAGATCCGTAGATCTCCCCCTGGCCCTGGACCCGTCCTTCACCATTTC
ms013 reverse ATP Spinach with computer generated stem 2 GATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAGGTACAATACACATGGACTCCTTCCATGTAGCTCCCGTAAGAGCCCTGAGATCCGTAGATCTCCCTACGCACCTGGACCCGTCCTTCACCATTTC
ms014 forward T7 promotor with Malachite Green Aptamer TAATACGACTCACTATAGGATCCCGACTGGCGAGAGCCAGGTAACGAATGGATCC
ms015 reverse T7 promotor with Malachite Green Aptamer GGATCCATTCGTTACCTGGCTCTCGCCAGTCGGGATCCTATAGTGAGTCGTATTA
ms016 forward EcoRV site, T7 promotor and Spinach2 with ATP Aptamer GATATCGCGCGCTAATACGACTCACTATAGGATGTAACTGAATGAAATGGTGAAGGACGGGTCCA
ms017 reverse HDV and Spinach2 with ATP Aptamer GGAGGCTGGGACCATGCCGGCCGATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAACACATGGACTCCTTCCATGTAGCTCCCGTAAGAGCCCTGAGATCCGTAGATCTCCCTGGACCCGTCCTTCACCATTTC
ms023 forward T7 2.5 promotor with Malachite Green Aptamer TAATACGACTCACTATTAGATCCCGACTGGCGAGAGCCAGGTAACGAATGGATCC
ms024 reverse T7 2.5 promotor with Malachite Green Aptamer GGATCCATTCGTTACCTGGCTCTCGCCAGTCGGGATCTAATAGTGAGTCGTATTA
ms025 forward Sp6 promotor with Malachite Green Aptamer TCATTTAGGTGACACTATAGGATCCCGACTGGCGAGAGCCAGGTAACGAATGGATCC
ms026 reverse Sp6 promotor with Malchite Green Aptamer GGATCCATTCGTTACCTGGCTCTCGCCAGTCGGGATCCTATAGTGTCACCTAAATGA
ms027 forward T3 promotor with Malachite Green Aptamer CAATTAACCCTCACTAAAGGATCCCGACTGGCGAGAGCCAGGTAACGAATGGATCC
ms028 reverse T3 promotor with Malachite Green Aptamer GGATCCATTCGTTACCTGGCTCTCGCCAGTCGGGATCCTTTAGTGAGGGTTAATTG
ms029 forward E. coli (T7A1) promotor with Malachite Green GGATCCATTCGTTACCTGGCTCTCGCCAGTCGGGATCCCCTCTCGATGGCTGTAAGTATCCTATAGGTTAGACTTTAAGTCAATACTCTTTTTGATAA
ms030 reverse E. coli (T7A1) promotor with Malachite Green TTATCAAAAAGAGTATTGACTTAAAGTCTAACCTATAGGATACTTACAGCCATCGAGAGGGGATCCCGACTGGCGAGAGCCAGGTAACGAATGGATCC
ms031 forward EcoRV site, T7 promotor and Hammerhead Ribozyme GATATCGCGCGCTAATACGACTCACTATAGTCCAGTCACCGGATGTGCTTTCCGGTCTGATGAGTCCGTGAGGACGAAACTGGT
ms032 reverse HDV, Malachite Green Aptamer and Hammerhead Ribozyme GGAGGCTGGGACCATGCCGGCCGGATCCATTCGTTACCTGGCTCTCGCCAGTCGGGATCCACCAGTTTCGTCCTCACGGACTCATC
ms032 reverse HDV, Malachite Green Aptamer and Hammerhead Ribozyme GGAGGCTGGGACCATGCCGGCCGGATCCATTCGTTACCTGGCTCTCGCCAGTCGGGATCCACCAGTTTCGTCCTCACGGACTCATC
ms034 reverse Malachite Green Aptamer with Hammerhead Ribozyme GGATCCATTCGTTACCTGGCTCTCGCCAGTCGGGATCCACCAGTTTCGTCCTCACGGA
ms036 forward T7 promotor, ATP Aptamer and Hammerhead Ribozyme TAATACGACTCACTATAGGAGATCTACGGATCTCAGGGCTCTCCAGTCACCGGATGTGCTTTCCGGTCTGATGAGTCCGTGAGGACGAAACTGGT
ms037 forward EcoRV site, T7 promotor and Spinach2 with ATP Aptamer with computer generated stem 1 GATATCGCGCGCTAATACGACTCACTATAGGATGTAACTGAATGAAATGGTGAAGGACGGGTCCAGGGCCAGGGGGAGATCTACGGATCTCAGGGCTCTTACGGGAGC
ms038 forward EcoRV site, T7 promotor and Spinach2 with ATP Aptermer with computer generated stem 2 GATATCGCGCGCTAATACGACTCACTATAGGATGTAACTGAATGAAATGGTGAAGGACGGGTCCAGGTGCGTAGGGAGATCTACGGATCTCAGGGCTCTTACGGG
ms039 reverse HDV and Spinach2 with ATP Aptamer with computer generated stem 1 GGAGGCTGGGACCATGCCGGCCGATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAGGGCAAAGACACATGGACTCCTTCCATGTAGCTCCCGTAAGAGCCCTGAG
ms040 reverse HDV and Spinach2 with ATP Aptamer with computer generated stem GGAGGCTGGGACCATGCCGGCCGATGTAACTAGTTACGGAGCTCACACTCTACTCAACAAGGTACAATACACATGGACTCCTTCCATGTAGCTCCCGTAAGAGCCCTGAG
ms041 reverse Spinach Mutation for RFC AAGCAGCCTACTGGACCCGTCCTTCACCATTTCATTCAGATACATCCTAT
ms042 forward Spinach Mutation for RFC CGGCAGCCTACTTGTTGAGTAGAGTGTGAGCTCCGTAACTAGATACATC
sh001 myc_pos_fwd_Gibson GAACAAAAACTTATTAGCGAAGAAGATCTTTAATAACTCGAGTCATGTAATTAGTTATG
sh002 myc_pos_rev_Gibson TTATTAAAGATCTTCTTCGCTAATAAGTTTTTGTTCCTTATAAAGCTCGTCCATTCCG
sh003 seq_Ub_Sandwich-rev GATCTGGAGGGATACCTTCC
sh004 seq_Ub_Sandwich-fwd GGAAGGTATCCCTCCAGATC
sh005 p413GPD_fwd_Gibson CGGAATGGACGAGCTTTATAAGTAATAAGATATCAAGCTTATCGATACCGTCG
sh006 p413GPD_rev_Gibson AAGATCTTCTTCGCTAATAAGTTTTTGTTCCATGAATTCCTGCAGCCCGGG
sh007 sfGFP_rev_Gibson_NEW CGACGGTATCGATAAGCTTGATATCTTATTACTTATAAAGCTCGTCCATTCCG
sh008 myc_pos_fwd_Gibson_NEW GAACAAAAACTTATTAGCGAAGAAGATCTTTAATAAGATATCAAGCTTATCGATACCGTC
sh014 cPCR_mycPos_Verify CTTGATATCTTATTAAAGATCTTCTTCGC
sh015 blank_ribozyme_fwd AAGGTCTCTGGCATGCACCTG
sh016 blank_ribozyme_rev TTGGTCTCACGAGTACTCCAAAAC
sh017 GFP_guide_shorty_fwd AAGGTCTCACGATCTTCTTCGCTTG
sh018 GFP_guide_shorty_rev TTGGTCTCTTGCCTGATAACTTTTAAAGAC
sh019 GFP_exon_shorty_fwd AAGGTCTCACTCGCCTAACGAG
sh020 GFP_exon_rev TTGGTCTCTTGATTTATTAAAGATCTTCTTCGC
sh021 GFP_guide_long_fwd AAGGTCTCACGATTGCGATTAACTAG
sh022 GFP_guide_long_rev TTGGTCTCTTGCCTGATAACTTTTAAAAGC
sh023 GFP_exon_long_fwd AAGGTCTCACTCGGCCATGC
tt001 bam_pcat_rbs_gfp TGACAGAATTCGGATCCGGCACGTAAGAGGTTCCAACTTTCACCATAATGAAACAAAAGAGGAGAAAATGTCCAAGGGTGAAGAGCTATTTAC
tt002 sal_gfp TGACTGCGGCCGCGTCGACCTTATAAAGCTCGTCCATTCCGTG