Team:Heidelberg/project/rtsms

Summary

The specific monitoring of small molecules in biochemical reactions is problem that scientist tried to solve since many years. In this project we developed small molecule sensor (SMS) enabling us to analyze biochemical reactions in real-time using a fluorescent readout. Our implemented JAWS software generates us the best ATP-binding Aptamer which is fused to the Spinach Aptamer. In presence of ATP fluorescence will be emitted. This tool enables the sensing of small molecules like ATP that are part of biochemical reactions.

Major Achievements:

  • Validation of the JAWS Software
  • Sensing of ATP concentrations in biochemical reactions
  • Establishment of a dual-fluorescent read-out system to sense small molecules in real-time
  • Detailed monitoring of the ATP consumption as well as RNA strand synthesis

Abstract

The specific monitoring of small molecules in biochemical reactions is problem that scientist tried to solve since many years. In this project we developed small molecule sensor (SMS) enabling us to analyze biochemical reactions in real-time using a fluorescent readout. Using this innovative method, we were able to analyze classical in vitro transcriptions in detail by monitoring the ATP consumption as well as RNA strand synthesis simultaneously. Using a Spinach RNA Aptamer fused to an ATP-binding Aptamer RNA we can specifically sense ATP concentrations in real-time. Our implemented JAWS software generates us the best ATP-binding Aptamer. Thus we can even detect small changes in the concentration of ATP during RNA synthesis. To validate the JAWS software as well as to show the general feasibility of our fluorescent tool-box system we analyzed transcription efficiencies of different RNA polymerases, the influence of the buffer as well as the effect of inhibitors like heparin on transcription. Finally, the combination of the JAWS Software and the fluorescent readout enables the scientific community the possibility to target specifically any small molecule of interest in vivo and in vitro.

Introduction

Small molecules are known to regulate many cellular functions. Hence, the development of innovative techniques to analyze metabolic pathways became an important field in research. Those assays require a variety of tools allowing the user to detect small molecules even within live cellsFernandez-Suarez2008Tyagi2009. Such methods hold promise to solve the mechanisms of transcription, translation, localization and the function of non-coding RNA. The most common ways to analyze small molecules or cellular pathways include protein-based methods like GFP or molecule reactive probes which have been engineered in the past. Having a fluorescent readout seems to be a valuable implement to provide time-resolved information in vivo and in vitro. Recently, Paige et al. discovered an RNA that mimics the green fluorescent protein (GFP) so called “Spinach” Paige2011Strack2013Strack2015. This Spinach aptamer was generated by systematic evolution of ligands by exponential enrichment (SELEX). In presence of the 3’5-difluoro-4-hydroxybenzylidne imidazolinone dye (DFHBI), RNA forms a stable Spinach-DFHBI RNA aptamer-complex, which is fluorescent. Since then Spinach has been successfully applied by several laboratories to image RNA in live cellsBuxbaum2015Dean2014. Moreover, this RNA has been used as a tool to monitor RNA synthesis in real-timeHöfer2013Pothoulakis in vitro or to sense different small molecule levels in vivoKellenberger2015Kellenberger2013. A prominent example is the sensing of ci-di-GMP concentrations in live cells. To do so, Kellenberger et al. attached a ci-di-GMP aptamer to the Spinach aptamer. In presence of a small molecule (c-di-GMP) the aptamer forms a functional stem which results in the formation of a fluorescent Spinach-DFHBI RNA aptamer-complex. Thus, small molecule concentrations can be determined by a fluorescence read-out system.

In our project we are interested in small molecules that are difficult to sense using common techniques. Here we will describe an innovative system that uses the Spinach2 fused to a specific aptamer to detect small molecules. In 2013 the Jaffrey Lab developed Spinach2 which shows in comparison to Spinach a better folding efficiency and thermostability. Strack2013. To generate aptamers that specifically bind to a small molecule, we will use our software JAWS. Using this set up we will be able to show that our software is capable to support time consuming methods like SELEX, to identify Aptamers that bind specifically to small molecules. As an interesting target, we will sense the small molecule adenosine triphosphate (ATP) in biochemical reactions. A common method that is performed in thousands of laboratories is a in vitro transcriptions To study the function of ribonucleic acids, RNA is generally prepared by in vitro transcriptionBeckert2011. Using bacteriophage DNA dependent RNA polymerases (T7, T3, Sp6), a variety of different RNAs can be enzymatically synthesized in the lab. In this context we want to establish a new biochemical readout method, called real-time SMS, to record simultaneously small molecules (ATP) and enzymatic kinetics (RNA polymerase) using Spinach2-ATP-Aptamer system.