Difference between revisions of "Team:Cambridge-JIC/Measurement"
KaterinaMN (Talk | contribs) |
KaterinaMN (Talk | contribs) |
||
Line 6: | Line 6: | ||
<div style="width: 80%; margin: 30px 50px;color:#000"> | <div style="width: 80%; margin: 30px 50px;color:#000"> | ||
<h1>Resolution Assessment of a Microscope Based on a Raspberry Pi Camera</h1> | <h1>Resolution Assessment of a Microscope Based on a Raspberry Pi Camera</h1> | ||
− | <h3> Camera Specifications | + | <h3> Camera Specifications </h3> |
<p> pixel size: 1.4μm x 1.4μm <br>sensor size: 2592x1944 pixels <br>total: 5MP <br>focal length: 3.6mm <br>aperture: 1.25mm <br> | <p> pixel size: 1.4μm x 1.4μm <br>sensor size: 2592x1944 pixels <br>total: 5MP <br>focal length: 3.6mm <br>aperture: 1.25mm <br> | ||
− | <a href="https://www.raspberrypi.org/documentation/hardware/camera.md" class="blue"> Source: Raspberry Pi </a> </p | + | <a href="https://www.raspberrypi.org/documentation/hardware/camera.md" class="blue"> Source: Raspberry Pi </a> </p> |
− | + | <h3>Theory of Optics</h3> | |
− | + | ||
− | + | ||
− | + | ||
− | <h3>Theory of Optics | + | |
<p> The resolution can be limited by two independent factors: </p><p> <ul><li>pixel size;</li><li>diffraction effects.</li></ul> </p> | <p> The resolution can be limited by two independent factors: </p><p> <ul><li>pixel size;</li><li>diffraction effects.</li></ul> </p> | ||
<div style="float:left"> <img src="//2015.igem.org/wiki/images/8/8b/CamJIC-Resolution.jpg" style="height:300px;margin:20px"> </div> <p> The larger of these determines the actual limitation of the system. In our case we know that the pixel size is 1.4 μm, so we now need to work out the diffraction limit, that is the smallest spot size which can be produced by the lens with the given specs. To calculate this, recall the Rayleigh criterion for a circular aperture: | <div style="float:left"> <img src="//2015.igem.org/wiki/images/8/8b/CamJIC-Resolution.jpg" style="height:300px;margin:20px"> </div> <p> The larger of these determines the actual limitation of the system. In our case we know that the pixel size is 1.4 μm, so we now need to work out the diffraction limit, that is the smallest spot size which can be produced by the lens with the given specs. To calculate this, recall the Rayleigh criterion for a circular aperture: | ||
Line 31: | Line 27: | ||
<div style="float:right"> <img src="//2015.igem.org/wiki/images/7/78/CamJIC-SpirogyraZoomIn.png" style="height:200px;margin:20px"> </div> | <div style="float:right"> <img src="//2015.igem.org/wiki/images/7/78/CamJIC-SpirogyraZoomIn.png" style="height:200px;margin:20px"> </div> | ||
<p> Compare this with a typical size of a chloroplast: 5-8μm diameter [1]. Our resolution will be just enough to image them, which is exactly what we have managed to do on this picture of Spirogyra cells. Note that these are larger than typical chloroplasts though. To obtain a better resolution, a lens with either larger aperture and/or shorter focal distance can be used, without the need of a better CCD. However, this is a tradeoff in terms of worse aberration and contrast. An improvement to the resolution will however be required in order to image bacteria, for example, which are of the order of 1μm in diameter [2].</p> | <p> Compare this with a typical size of a chloroplast: 5-8μm diameter [1]. Our resolution will be just enough to image them, which is exactly what we have managed to do on this picture of Spirogyra cells. Note that these are larger than typical chloroplasts though. To obtain a better resolution, a lens with either larger aperture and/or shorter focal distance can be used, without the need of a better CCD. However, this is a tradeoff in terms of worse aberration and contrast. An improvement to the resolution will however be required in order to image bacteria, for example, which are of the order of 1μm in diameter [2].</p> | ||
− | <p> [1] Wise, R. and Hoober, J. (2006). The structure and function of plastids. Dordrecht: Springer. <br> [2] Encyclopedia Britannica, (2015). bacteria :: Diversity of structure of bacteria. <a href="http://www.britannica.com/science/bacteria/Diversity-of-structure-of-bacteria" class="blue">[online]</a> [Accessed 30 Jul. 2015].</p | + | <p> [1] Wise, R. and Hoober, J. (2006). The structure and function of plastids. Dordrecht: Springer. <br> [2] Encyclopedia Britannica, (2015). bacteria :: Diversity of structure of bacteria. <a href="http://www.britannica.com/science/bacteria/Diversity-of-structure-of-bacteria" class="blue">[online]</a> [Accessed 30 Jul. 2015].</p> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<h3> Inverting the Lens: Why and How: </h3> | <h3> Inverting the Lens: Why and How: </h3> | ||
<p>The way a camera works is by focusing an image of a distant large object as a small set of points onto the CCD, which is positioned close to the lens (in its focal plane). Theoretically however, it might as well do the opposite (because light paths are reversible – a well known and intuitive physical principle): that is, inspect the CCD pixels and project their greatly enlarged image onto a distant screen. <br>The lens has a small aperture (1.25mm) at one end, and a larger one (4mm) offering a wider view angle at the other, which is required for viewing close up objects. This is normally oriented towards the CCD. <br> <center> <img src="//2015.igem.org/wiki/images/a/a2/CamJIC-CameraDiagram.JPG" style="height:250px;margin:20px"> <img src="//2015.igem.org/wiki/images/6/64/CamJIC-MicroscopeDiagram.JPG" style="height:250px;margin:20px"> </center> | <p>The way a camera works is by focusing an image of a distant large object as a small set of points onto the CCD, which is positioned close to the lens (in its focal plane). Theoretically however, it might as well do the opposite (because light paths are reversible – a well known and intuitive physical principle): that is, inspect the CCD pixels and project their greatly enlarged image onto a distant screen. <br>The lens has a small aperture (1.25mm) at one end, and a larger one (4mm) offering a wider view angle at the other, which is required for viewing close up objects. This is normally oriented towards the CCD. <br> <center> <img src="//2015.igem.org/wiki/images/a/a2/CamJIC-CameraDiagram.JPG" style="height:250px;margin:20px"> <img src="//2015.igem.org/wiki/images/6/64/CamJIC-MicroscopeDiagram.JPG" style="height:250px;margin:20px"> </center> | ||
Line 43: | Line 35: | ||
<li>position the sensor behind the lens, now at a much larger distance (roughly 2.8cm) – for this we have designed a special camera mount.</li></ul></p> | <li>position the sensor behind the lens, now at a much larger distance (roughly 2.8cm) – for this we have designed a special camera mount.</li></ul></p> | ||
<p>Now we have the Raspberry Pi camera working as a microscope!</p> | <p>Now we have the Raspberry Pi camera working as a microscope!</p> | ||
− | |||
<p><b>The problem: how to unscrew the lens from the camera</b> | <p><b>The problem: how to unscrew the lens from the camera</b> | ||
The Raspberry Pi camera is sold with the lens screwed (and lightly glued) into the sensor casing. To unscrew the lens, you will need the right type of pliers: ideally with ridged surface. Grip the top part of the plastic casing of the lens firmly, being careful not to crush it, and rotate counterclockwise. After the first small rotation, you should be able to unscrew it fully manually. <i>ATTENTION: might not work from the first time! Do not try to cut out the lens or force it out in any other way.</i> | The Raspberry Pi camera is sold with the lens screwed (and lightly glued) into the sensor casing. To unscrew the lens, you will need the right type of pliers: ideally with ridged surface. Grip the top part of the plastic casing of the lens firmly, being careful not to crush it, and rotate counterclockwise. After the first small rotation, you should be able to unscrew it fully manually. <i>ATTENTION: might not work from the first time! Do not try to cut out the lens or force it out in any other way.</i> |
Revision as of 11:55, 30 July 2015