Difference between revisions of "Team:Cambridge-JIC/TestHome"

(Fixed Images)
 
(63 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{:Team:Cambridge-JIC/Templates/Menu}}
 
{{:Team:Cambridge-JIC/Templates/Menu}}
 
<html>
 
<html>
<section>
+
<style>
     <div class="slide" style="background-image: url(https://static.igem.org/mediawiki/2015/f/f8/CamJIC-Panel-Main.png)">
+
.downarrow {
 +
margin: 0 auto;
 +
width: 256px;
 +
height:256px;
 +
background: url(//2015.igem.org/wiki/images/b/be/CamJIC-Downarrow.png);
 +
z-index:1;
 +
position:relative;
 +
}
 +
#sidebar {
 +
position:fixed;
 +
top:130px;
 +
right:20px;
 +
width: 23px;
 +
z-index:1;
 +
}
 +
 
 +
.sidebar-item {
 +
width: 20px;
 +
height:20px;
 +
float: left;
 +
border-radius: 50%;
 +
border: #555 solid;
 +
margin-bottom: 5px;
 +
cursor:pointer;
 +
}
 +
</style>
 +
 
 +
<script>
 +
$(window).ready(function(){
 +
 
 +
$(".downarrow").each(function(){
 +
    if($(this).attr("id") !== "overlay") {
 +
        $(this).on("click", function(){
 +
            console.log($(this).parents("section").next().offset().top)
 +
$("html, body").animate({ scrollTop: $(this).parents("section").next().offset().top }, 1000);
 +
        })
 +
        $(this).css("cursor", "pointer")
 +
    }
 +
})
 +
 
 +
$(window).on("resize", function(){
 +
 
 +
$("#sidebar").offset({right: $(".cam-container section:first-of-type div").offset().right - 30})
 +
 
 +
if($(".navbar-collapse").is(":visible")) {
 +
$(".downarrow").show()
 +
$("#sidebar").show()
 +
} else {
 +
$(".downarrow").hide()
 +
$("#sidebar").hide()
 +
}
 +
 
 +
}).resize();
 +
 
 +
var ix = 0;
 +
$("section").each(function(){
 +
if($(this).attr("id") != "footer-sec") {
 +
    $("#sidebar").append("<div onclick=\"scrollsection("+ix+")\" class=\"sidebar-item\""+(ix==0?" style=\"background: #555\"":"")+"></div>")
 +
}
 +
ix++
 +
})
 +
 
 +
 
 +
 
 +
$(window).on("scroll", function(){
 +
    var i=0;
 +
    $("section").each(function(){
 +
        if($(this).offset().top <= $(window).scrollTop()) {
 +
            $(".sidebar-item").css("background", "none")
 +
            $($(".sidebar-item").get(i)).css("background", "#555")
 +
        }
 +
        i++;
 +
    })
 +
})
 +
 
 +
$(window).on("scroll", function(){
 +
 
 +
$('.downarrow').each(function(){
 +
var position = $(this).offset().top +$(this).height()/2 - $(window).scrollTop();
 +
$(this).css("opacity", position/$(window).height())
 +
})
 +
 
 +
})
 +
 
 +
});
 +
 
 +
function scrollsection(id) {
 +
$("html, body").animate({ scrollTop: $($("section").get(id)).offset().top }, 1000);
 +
}
 +
</script>
 +
<div id="sidebar"></div>
 +
 
 +
        <div class="downarrow" id="overlay" style="background:url(//2015.igem.org/wiki/images/6/60/CamJIC-Overlay_guide.png); background-size: 100% 100%;width:100%;height:27%;position:absolute;z-index:0"></div>
 +
<section id="intro" style="background-color: #fff; padding-top:0">
 +
     <div class="slide" style="background-image: url(//2015.igem.org/wiki/images/f/f8/CamJIC-Panel-Main.png)" data-mobimg="url(//2015.igem.org/wiki/images/f/f8/CamJIC-Logo2.png)">
 
         <div style="width: 40%; margin: 450px 530px;"></div>
 
         <div style="width: 40%; margin: 450px 530px;"></div>
 
     </div>
 
     </div>
 +
        <div class="downarrow" style="margin-top: -256px;background:url(//2015.igem.org/wiki/images/4/47/CamJIC-Downarrow_guide.png)"></div>
 
</section>
 
</section>
<section>
+
<section style="background-color: #9ecda3">
     <div class="slide" style="background-image:url(https://static.igem.org/mediawiki/2015/d/db/CamJIC-Panel-Abstract.png)">
+
     <div class="slide" style="background-image:url(//2015.igem.org/wiki/images/d/db/CamJIC-Panel-Abstract.png)">
         <div style="width: 60%; margin: 50px; font-size: 20px;">
+
         <div style="width: 78%; margin: 50px; font-size: 20px;">
 
             <h2>Abstract</h2>
 
             <h2>Abstract</h2>
             <p>Fluorescence microscopy has become a ubiquitous part of biological research, but hardware can often be prohibitively expensive. This is particularly true for labs with small budgets, including those in developing countries. We aim to provide a well documented, easily modifiable and high quality fluorescence microscope to address this problem. The motivation for the project comes from our own experience: that is, to make the best education and facilities accessible to everyone, regardless of their financial status.</p>
+
             <p>Fluorescence microscopy has become a ubiquitous part of biological research and synthetic biology, but hardware can often be <span class="hl_1">large and prohibitively expensive</span>. This is particularly true for labs with small budgets, including those in the DIY Bio community and developing countries. Queuing systems imposed in labs for use of a few expensive microscopes can make research even more <span class="hl_1">laborious and time-consuming</span> than it needs to be. Furthermore, this makes it almost impossible to perform time-lapse imaging or imaging in environments such as in an incubator or in a fume hood.</p>
            <p>The mechanics of the microscope will be 3D printable, and all other parts will be cheap and accessible. These introduce a novel method (developed by Dr Richard Bowman, Cambridge) for precise positioning and control which exploits the flexibility of the printed parts. The microscope will also utilize the developed-in-Cambridge Raspberry Pi board and camera module for image capture. Ultimately we’re aiming for <10 micron resolution, both in brightfield and fluorescence modes. We are also developing software to allow user-friendly control and image processing that will make the microscope highly modifiable and re-programmable.</p>
+
          <p>We aim to provide a <span class="hl_1">well documented, physically compact, easily modifiable and high quality fluorescence microscope</span> to address all of these problems. We are designing it in a modular fashion such that it can be used standalone and also be incorporated into larger frameworks, with various pluggable stages.</p>
 +
 
 +
 
 +
        <div class="downarrow" style="margin-top:-50px;"></div>
 
         </div>
 
         </div>
 +
 
     </div>
 
     </div>
 
</section>
 
</section>
 +
<section style="background-color: #ffa8a3">
 +
    <div class="slide" style="background-image:url(//2015.igem.org/wiki/images/b/b5/CamJIC-Panel-3.png)">
 +
        <div style="padding-right: 50px; padding-left: 170px; padding-top: 60px; font-size: 20px;" class="padleft">
 +
<p>The mechanics of the microscope will be 3D printable, and all other parts will be cheap and accessible. These introduce a novel method (developed by Dr Richard Bowman, Cambridge) for <span class="hl_2">precise positioning and control</span> which exploits the flexibility of the printed parts. The microscope will also utilise the developed-in-Cambridge Raspberry Pi board and camera module for image capture. Ultimately we are aiming for <span class="hl_2">4 micron resolution</span>, both in brightfield and fluorescence modes.</p>
 +
          <p>Furthermore, software used to control commercial microscopes is very much focused upon translating the physical experience of using a microscope into a computer. We aim to leverage the full computational potential of a digital microscope, <span class="hl_2">carefully considering functional UX design</span> to allow control (locally and also over a network) via a Google Maps-like interface and implementing <span class="hl_2">background image processing</span>, <span class="hl_2">annotation</span> and <span class="hl_2">stitching</span>, as well as allowing <span class="hl_2">fully autonomous operation</span>.  As a proof of principle, we are also developing automated screening systems on our microscope architecture.</p>
 +
        </div>
 +
    </div>
 +
</section>
 +
 
</html>
 
</html>
 
{{:Team:Cambridge-JIC/Templates/Footer}}
 
{{:Team:Cambridge-JIC/Templates/Footer}}

Latest revision as of 02:18, 4 August 2015

Abstract

Fluorescence microscopy has become a ubiquitous part of biological research and synthetic biology, but hardware can often be large and prohibitively expensive. This is particularly true for labs with small budgets, including those in the DIY Bio community and developing countries. Queuing systems imposed in labs for use of a few expensive microscopes can make research even more laborious and time-consuming than it needs to be. Furthermore, this makes it almost impossible to perform time-lapse imaging or imaging in environments such as in an incubator or in a fume hood.

We aim to provide a well documented, physically compact, easily modifiable and high quality fluorescence microscope to address all of these problems. We are designing it in a modular fashion such that it can be used standalone and also be incorporated into larger frameworks, with various pluggable stages.

The mechanics of the microscope will be 3D printable, and all other parts will be cheap and accessible. These introduce a novel method (developed by Dr Richard Bowman, Cambridge) for precise positioning and control which exploits the flexibility of the printed parts. The microscope will also utilise the developed-in-Cambridge Raspberry Pi board and camera module for image capture. Ultimately we are aiming for 4 micron resolution, both in brightfield and fluorescence modes.

Furthermore, software used to control commercial microscopes is very much focused upon translating the physical experience of using a microscope into a computer. We aim to leverage the full computational potential of a digital microscope, carefully considering functional UX design to allow control (locally and also over a network) via a Google Maps-like interface and implementing background image processing, annotation and stitching, as well as allowing fully autonomous operation. As a proof of principle, we are also developing automated screening systems on our microscope architecture.