Difference between revisions of "Team:Cambridge-JIC/Make Your Own"
KaterinaMN (Talk | contribs) |
KaterinaMN (Talk | contribs) |
||
Line 53: | Line 53: | ||
Bright-field is the simplest of all imaging modes: just the sample, backlit by a white light source (LED). Bright-field microscopy does not give very good contrast, so it works best for stained samples, or intrinsically colourful samples. | Bright-field is the simplest of all imaging modes: just the sample, backlit by a white light source (LED). Bright-field microscopy does not give very good contrast, so it works best for stained samples, or intrinsically colourful samples. | ||
<br>For unstained samples, dark-field microscopy gives better contrast. The dark-field set-up is very similar to that of bight-field, but with the addition of a dark disc (what we call the dark-field tube) in between the white light and the sample. This stops direct illumination from reaching the objective, and so the only recorded light is that scattered by the sample. The main issue with dark-field is that it gives images with very low light levels.<br> | <br>For unstained samples, dark-field microscopy gives better contrast. The dark-field set-up is very similar to that of bight-field, but with the addition of a dark disc (what we call the dark-field tube) in between the white light and the sample. This stops direct illumination from reaching the objective, and so the only recorded light is that scattered by the sample. The main issue with dark-field is that it gives images with very low light levels.<br> | ||
− | And, finally, fluorescence microscopy allows the imaging of fluorescent proteins (FPs). When excited by light of a specific wavelength (the excitation wavelength), these proteins emit light at a different wavelength (the emission wavelength). Each FP has its own excitation and emission wavelengths. This is why, for each specific FP you will need different LEDs for illumination and different filter sets. For a more detailed explanation on how fluorescence works, refer to our <a href="//2015.igem.org/Team:Cambridge-JIC/Modeling" class="blue">Modeling</a> page.</p> | + | And, finally, fluorescence microscopy allows the imaging of fluorescent proteins (FPs). When excited by light of a specific wavelength (the excitation wavelength), these proteins emit light at a different wavelength (the emission wavelength). Each FP has its own excitation and emission wavelengths. This is why, for each specific FP you will need different LEDs for illumination and different filter sets. For a more detailed explanation on how fluorescence works, and how to pick the filters, refer to our <a href="//2015.igem.org/Team:Cambridge-JIC/Modeling" class="blue">Modeling</a> page.</p> |
<p><b>How do I set up my 3D printer?</b><br> | <p><b>How do I set up my 3D printer?</b><br> | ||
You will need to print your parts using PLA filament. Check out our <a href="//2015.igem.org/Team:Cambridge-JIC/3D_Printing" class="blue">3D printing guide</a>.</p> | You will need to print your parts using PLA filament. Check out our <a href="//2015.igem.org/Team:Cambridge-JIC/3D_Printing" class="blue">3D printing guide</a>.</p> |
Revision as of 23:31, 18 September 2015
Open Scope Documentation by Simon Swan, Katerina Naydenova, Richard Bowman is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Please note that all contributions to 2015.igem.org are considered to be released under the Creative Commons Attribution.