Difference between revisions of "Team:Cambridge-JIC/Measurement"
Line 19: | Line 19: | ||
</div> | </div> | ||
− | <h1>Resolution Assessment of a Microscope Based on a Raspberry Pi Camera</h1> | + | <h1 style="line-height:1.295em">Resolution Assessment of a Microscope Based on a Raspberry Pi Camera</h1> |
<h3>Theory of Optics</h3> | <h3>Theory of Optics</h3> | ||
<p> The resolution can be limited by two independent factors: </p> <ul><li><p>pixel size;</p></li><li><p>diffraction effects.</p></li></ul> | <p> The resolution can be limited by two independent factors: </p> <ul><li><p>pixel size;</p></li><li><p>diffraction effects.</p></li></ul> | ||
Line 25: | Line 25: | ||
sinθ=1.22 λ ⁄ d. Here λ~550nm is the wavelength of light, taking green for the middle of the visible spectrum, d=1.25mm is the diameter of the aperture and θ (small angle) is the angular radius of the spot, that is tanθ=r ⁄ L. Here r is the radius of the spot projected at a distance L from the aperture, which in our setup is actually the focal length f of the Raspberry Pi camera lens (and the spot is projected onto the CCD sensor). | sinθ=1.22 λ ⁄ d. Here λ~550nm is the wavelength of light, taking green for the middle of the visible spectrum, d=1.25mm is the diameter of the aperture and θ (small angle) is the angular radius of the spot, that is tanθ=r ⁄ L. Here r is the radius of the spot projected at a distance L from the aperture, which in our setup is actually the focal length f of the Raspberry Pi camera lens (and the spot is projected onto the CCD sensor). | ||
From first approximation for a small angle: sinθ≈tanθ, so 1.22 λ ⁄ d=r ⁄ f. Rearranging this equation and plugging in the numbers gives the following diameter of the smallest resolvable spot: 2r≈3.8μm. This is almost three times the size of the pixel on the CCD, which imposes the actual limit on the resolution. The pixels of the CCD outresolve the theoretical lens limits.</p> | From first approximation for a small angle: sinθ≈tanθ, so 1.22 λ ⁄ d=r ⁄ f. Rearranging this equation and plugging in the numbers gives the following diameter of the smallest resolvable spot: 2r≈3.8μm. This is almost three times the size of the pixel on the CCD, which imposes the actual limit on the resolution. The pixels of the CCD outresolve the theoretical lens limits.</p> | ||
− | <p><center><h4> Final resolution estimate of a microscope based on Raspberry Pi camera: 3.8μm </h4> </center></p> | + | <p><center><h4 style="padding:2em 0"> Final resolution estimate of a microscope based on Raspberry Pi camera: 3.8μm </h4> </center></p> |
<div style="float:right"> <img src="//2015.igem.org/wiki/images/7/78/CamJIC-SpirogyraZoomIn.png" style="height:200px;margin:20px"> </div> | <div style="float:right"> <img src="//2015.igem.org/wiki/images/7/78/CamJIC-SpirogyraZoomIn.png" style="height:200px;margin:20px"> </div> | ||
<p> Compare this with a typical size of a chloroplast: 5-8μm diameter [1]. Our resolution will be just enough to image them, which is exactly what we have managed to do on this picture of Spirogyra cells. Note that these are larger than typical chloroplasts though. To obtain a better resolution, a lens with either larger aperture and/or shorter focal distance can be used, without the need of a better CCD. However, this is a tradeoff in terms of worse aberration and contrast. An improvement to the resolution will however be required in order to image bacteria, for example, which are of the order of 1μm in diameter [2].</p> | <p> Compare this with a typical size of a chloroplast: 5-8μm diameter [1]. Our resolution will be just enough to image them, which is exactly what we have managed to do on this picture of Spirogyra cells. Note that these are larger than typical chloroplasts though. To obtain a better resolution, a lens with either larger aperture and/or shorter focal distance can be used, without the need of a better CCD. However, this is a tradeoff in terms of worse aberration and contrast. An improvement to the resolution will however be required in order to image bacteria, for example, which are of the order of 1μm in diameter [2].</p> |
Revision as of 12:51, 30 July 2015