Difference between revisions of "Team:Cambridge-JIC/Design"
KaterinaMN (Talk | contribs) |
|||
Line 81: | Line 81: | ||
<p>Most energy is consumed from the materials used to make the microscope, at approximately 10 times that of the 'use' energy consumption. It is likely that with a commercial microscope the use and material energy would be closer matched due to the commercial microscope having a much longer lifetime. Although it may seem that a lot of material is used on OpenScope for its short lifetime, much of the material used can be recycled or reused directly. The thermoplastic PLA used to make the majority of the microscope chassis can be recycled to be made into many different products. PLA is derived from renewable resources such as corn starch and sugarcane, and is also fully biodegradable. The other main components of the microscope are the printed circuit boards used in the Raspberry Pi and Arduino. These are modular and open-source and so when no longer needed for use in the microscope can be reprogrammed to carry out other tasks in a different product.</p> | <p>Most energy is consumed from the materials used to make the microscope, at approximately 10 times that of the 'use' energy consumption. It is likely that with a commercial microscope the use and material energy would be closer matched due to the commercial microscope having a much longer lifetime. Although it may seem that a lot of material is used on OpenScope for its short lifetime, much of the material used can be recycled or reused directly. The thermoplastic PLA used to make the majority of the microscope chassis can be recycled to be made into many different products. PLA is derived from renewable resources such as corn starch and sugarcane, and is also fully biodegradable. The other main components of the microscope are the printed circuit boards used in the Raspberry Pi and Arduino. These are modular and open-source and so when no longer needed for use in the microscope can be reprogrammed to carry out other tasks in a different product.</p> | ||
<p>There are further ways to increase the sustainability of OpenScope that were not implemented within our project. The RecycleBot is a piece of open source hardware which has the capability to recycle plastic waste and make it into 3D printing filament [11]. The main power consumption for our project was in fact from the 3D printer (not accounted for in the manufacturing process report). In order to improve sustainability in this case there is the possibility of using renewable energies. The first community-scale solar powered printer was developed by White Gator Labs and was based on a Mendel RepRap variant running RAMPS1.3 [12]. This would also allow for printing in developing countries and isolated regions where access to electricity may be limited. To find out more about the development of 3D printing and personal manufacturing download the pdf below.</p> | <p>There are further ways to increase the sustainability of OpenScope that were not implemented within our project. The RecycleBot is a piece of open source hardware which has the capability to recycle plastic waste and make it into 3D printing filament [11]. The main power consumption for our project was in fact from the 3D printer (not accounted for in the manufacturing process report). In order to improve sustainability in this case there is the possibility of using renewable energies. The first community-scale solar powered printer was developed by White Gator Labs and was based on a Mendel RepRap variant running RAMPS1.3 [12]. This would also allow for printing in developing countries and isolated regions where access to electricity may be limited. To find out more about the development of 3D printing and personal manufacturing download the pdf below.</p> | ||
− | |||
− | |||
</div></div></section> | </div></div></section> |
Revision as of 00:34, 19 September 2015