Difference between revisions of "Team:Cambridge-JIC/Safety"
KaterinaMN (Talk | contribs) |
KaterinaMN (Talk | contribs) |
||
Line 13: | Line 13: | ||
A microscope such as the one we have developed has very few safety concerns. Microscopy is a well-established field, dating back hundreds of years, and techniques for it are common practice and ensure safety. Fluorescence microscopy is little different. | A microscope such as the one we have developed has very few safety concerns. Microscopy is a well-established field, dating back hundreds of years, and techniques for it are common practice and ensure safety. Fluorescence microscopy is little different. | ||
Some fluorescent compounds require UV light in order to excite them to emit radiation. UV light is potentially harmful to the eyes and skin if not used with caution, and should be handled carefully. However, the wavelength of UV light used (395 nm) is well above the wavelength considered most harmful to humans, around 260-270nm [1], and the power of the LEDs used is fairly low. Any UV radiation a user would normally be exposed to while using our microscope would be significantly less intense than that of sunlight, so this was not considered a serious safety issue. | Some fluorescent compounds require UV light in order to excite them to emit radiation. UV light is potentially harmful to the eyes and skin if not used with caution, and should be handled carefully. However, the wavelength of UV light used (395 nm) is well above the wavelength considered most harmful to humans, around 260-270nm [1], and the power of the LEDs used is fairly low. Any UV radiation a user would normally be exposed to while using our microscope would be significantly less intense than that of sunlight, so this was not considered a serious safety issue. | ||
− | The biological side of the project involved fairly standard, routine transformations with fluorescent proteins in order to test our equipment. Marchantia, the transformed plant we imaged, is a common weed which poses no threat to humans. Its transformation merely led it to express RFP, which does not make the plant harmful to humans or the ecosystem. The vector used to transform the plant, Agrobacterium, is an agricultural pest which inserts plasmids into plant cells and usually does not cause any harm in humans. Transforming it to insert RFP plasmids did not make it any more dangerous or competitive in the environment. | + | The biological side of the project involved fairly standard, routine transformations with fluorescent proteins in order to test our equipment. <i>Marchantia</i>, the transformed plant we imaged, is a common weed which poses no threat to humans. Its transformation merely led it to express RFP, which does not make the plant harmful to humans or the ecosystem. The vector used to transform the plant, <i>Agrobacterium</i>, is an agricultural pest which inserts plasmids into plant cells and usually does not cause any harm in humans. Transforming it to insert RFP plasmids did not make it any more dangerous or competitive in the environment. |
</p> | </p> | ||
<style type="text/css"> | <style type="text/css"> |
Revision as of 08:50, 24 July 2015