Team:Paris Bettencourt/Protocols
Ferment It Yourself
iGEM Paris-Bettencourt 2O15
- Background
- Design
-
-
-
-
-
-
Protocols
Analytical digestion protocol
- Prepare the following mix:
- 2µL 10X Digestion buffer
- 0.5µL Eco31I
- 0.5µL BbsI
- 2µL of DNA (200ng)
- 15µL water
- incubate 1h at 37°C
Annealing Protocol
- Phosphorylation of the oligos
- 5.6μL DNAse/RNAse free water
- 6.0μL oligo 1 (10µM)
- 6.0μL oligo 2 (10µM)
- 2.0μL 10X T4 DNA ligase buffer
- 0.4μL T4 PolyNucleotide Kinase Total: 20μL
- incubate 30min at 37°C
- add 1μL of 1M NaCl
- incube 5min at 95°C
- let the mix cool down
- use 2μL of the mix as a 10X solution
Chemical test for competent cells
- 20-30 sec at 8-10 krpm for the DNA tube (from the kit).
- Thow cell competent on ice. Label 2 ml eppendorf µtube for each concentration and put it on ice.
- Add 1µl of DNA into each µtube.
- Add 50µl of competent cell into each tube. Flick gently to mix. Incubate in ice for 30 minutes. Pre-heat waterbath at 42°C.
- Heat-shock cell by placing in waterbath 1 minute. CAUTION : The top need to be close to the water level, but not immerge in.
- Keep back the tube to ice for 5 minutes.
- Add 200µl of SOC media, incubate 37°C for 2h. Prepare agar plate of the media that you want, and label it (3 plate for each concentration).
- Add 20µl of each tube n the appropriate plate. Incubate 37°C for OVN (12-16h).
Electroporation
- Thaw electrocompetent cells on ice
- Add 2µL of ligation product or 0.5µL of native plasmid to the cells
- Transfer the cells in an 0.2mm electroporation cuvette
- put the cuvette in the electroporation device and pulse the cells at 2.5kV, 200 Ohms and 25µF
- add 200µL of LB right after pulsing
- recover 2 hours at 37°C
- plate 200µL and 50µL of the cells on LB + erythromycin (200µg/mL), incubate overnight at 37°C
Electrocompetent Cells
- Inoculate two 250mL LB flasks with 100µL of an overnight culture of DH5α
- Incubate until the the DO600 reach 0.5 to 0.7
- Place the cultures on ice for 15 minutes
- For the culture in cold sterile 50mL falcon tubes
- Centrifuge them for 10 minutes at 6000rpm
- Throw the supernatant
- Resuspend the cells in 50mL cold distilled water
- Centrifuge them for 10 minutes at 6000rpm
- Throw the supernatant
- Resuspend the cells in 25mL cold distilled water
- Centrifuge them for 10 minutes at 6000rpm
- Throw the supernatant
- Resuspend the cells in 12.5mL cold 10% glycerol
- Centrifuge them for 10 minutes at 6000rpm
- Throw the supernatant
- Resuspend the cells in 5mL cold 10% glycerol
- Make aliquots of the desire volume in microcentrifuge tubes and freeze them at -80°C
Digestion
- Prepare the following mix:
- 4μL of Enzyme 1 Fast Digest
- 4μL of Enzyme 2 Fast Digest
- 4μL of FastAP
- 12μL of Fast Digest buffer 10X
- 1 to 3 μg of DNA
- up to 120μL of water
- mix by pipetting up and down
- incube 10 to 20 minutes at 37°C
- incube 10 minutes at 68°C to inactivate the enzymes
Lactobacillus plantarum electrocompetent cells
- Inoculate 5ml MRS medium with L. plantarum freezer stock.
- Grow overnight at 30°C without shaking.
- Add 1.25g glycine to two flasks of 50ml MRS medium.
- Shake to dissolve.
- Add 1ml overnight culture to each flask (1:50 dlution).
- Culture for ~3 hours at 37°C with shaking.
- Centrifuge culture for 5min at 4000g
- Resuspend in 25ml ice-cold DI water.
- Repeat it.
- Centrifuge for 5min at 4000g
- Resuspend in 5ml 50mM EDTA.
- Incubate on ice for 5 minutes
- Add 25ml ice-cold DI water.
- Centrifuge culture for 5min at 4000g
- Resuspend in 25ml ice-cold DI water.
- Centrifuge culture for 5min at 4000g
- Resuspend in 25ml ice-cold 0.5M Sucrose, 10% glycerol.
- Repeat it.
- Centrifuge culture for 5min at 4000g
- Resuspend in 0.8ml ice-cold 0.5M Sucrose, 10% glycerol.
- Aliquot 90μL of cell concentrate into ~20 microcentrifuge tubes.
- Keep on ice until use (within the next two hours).
- Add 10μL of plasmid DNA to the 90μL of cell concentrate.
- Keep on ice for 5 minutes.
- Put 1mm cuvettes on ice too.
- Pipette the cell/DNA mixture into the cuvette
- Electrporate at 1200 volts
- Time constant should be ~5.0
- Immediately transfer the electroporated cells to 900μL of MRS medium.
- Incubate at 30°C for 2-3 hours.
- Plate on medium with the appropriate antibiotic.
- Incubate at 30°C for two days.
- Pick a colony
Heat Shock Transformation
- Thaw frozen chemically competent cells (20µL aliquots) on ice for 10min.
- add 2µL of ligation product (or 0.5µL of miniprep) and incubate the cells 30sec at 42°C.
- put the cells back on ice for 2min.
- add 200µL of LB to the cells and incubate 2 hours at 37°C.
- plate the cells on LB + erythromycin (150µg/mL) or LB + erythromycin (10µg/mL), incubation at 37°C overnight.
Vitamin A Titration
- Take 1g of food (with particle < 1mm of diameter) in bottle protected of the light, and add 15ml of hexane. Mix it.
- Add again 15ml of hexane and shake during 5-10 minutes (do the same time, if you want compare two food sample).
- In an other bottle protected of the light, do a filtration (coarse cellulose filter) of the previous solution.
- Take the batter who don't pass the filter, and 15ml of hexane, shake 5 minutes, and filtered it like previously, to take all B-caroten as possible from the food sample.
- Put in the fridge at -20°C to conserve it.
- Obtain the result with a spectrophotometer with wavelenght of 450 nm (with a blank of hexane).
Vitamin A Titration using HPLC
- Suspend cells in 1 mL of sterile water.
- Add 0.5 to 0.75 mm glass beads and vortex for 3 minutes.
- Add 2.5 mL of 0.2% (wt/vol) pyrogallol dissolved in methanol and vortex for 3 minutes.
- Add 1.25 mL of 60% (wt/vol) KOH and vortex for 10 seconds.
- Incubate for 1 h at 75ºC, vortexing every 15 minutes.
- Add appropriate amount of hexane.
- Centrifuge tubes for 5 minutes at 2,800 rpm.
- Pipette 1 mL of hexane into a cuvette.
Yeast Lysis with NaOH
- 20 µl NaOH into PCR tubes
- Pick colonies into NaOH
- Incubate at 95°C for ~45 minutes
- Centrifugate at 8000 krpm for 10 minutes
- Use 1 µl supernatant as template in a (10 µl) PCR
Heat Shock Transformation for Yeast
- After growth, determine the titer of the yeast culture by using spectrophotometer : pipette 10µL of cells into 1mL of water in spectrophotometer cuvette and measure the OD at 600nm.
- Add 2.5x108 cells to 50mL of 2X YPD in a culture flask.
- Incubate the flask in a shaking incubator at 30°C until the cell culture is at least 2x107 cells.mL-1
- Denature 1mL of carrier DNA at 99°C for 5min and chill immediately in ice.
- Harvest the yeast cells by centrifugation at 3,000g for 5min.
- Resuspend the pellet in 25mL of sterile water and centrifuge at 3,000g for 5min at 20°C. Repeat this wash with sterile water 2 times.
- Resuspend the last pellet in 1mL of sterile water.
- Transfer the cell suspension to a 1.5mL microcentrifuge tube.
- Centrifuge for 30s at 13,000g and discard the supernatant.
- Resuspend the cells in 1mL of sterile water and pipette 100µL samples into 1.5mL microcentrifuge tubes, one for each transformation.
- For each transformation :
- 240µL of PEG 3350 (50% (w/v))
- 36µL of LiAc 1.0M
- 50µL of single-stranded carrier DNA (2.0mg.mL-1)
- 6µL of PCR product
- 28µL of water DNAse Free
- Place the tubes at 42°C for 40min.
- Centrifuge the tubes at 13,000g for 30s in a microcentrifuge tube and remove the supernatant.
- Pipette 1mL of YPD liquid medium into the transformation tube, and vortex mix to resuspend pellet.
- Incubate 3h at 30°C to ensure good antibiotic expression.
- Plate 2, 20 and 200µL of the cell suspension onto YPD medium with 200µm.mL-1 antibiotic G418.
- Incubate the plates at 30°C for 3 days.
Ligation
- Mix the following:
- vector 100ng
- insert 300ng
- 2µL T4 DNA ligase buffer 10X
- 1µL T4 DNA ligase
- up to 20µL of water
- incubate 10 to 15 minutes at 22°C
- incubate 5 minutes at 70°C
- Prepare the following mix: