Difference between revisions of "Team:HKUST-Rice/Nitrate Sensor PyeaR"

 
(194 intermediate revisions by 6 users not shown)
Line 2: Line 2:
  
 
<html>
 
<html>
<head>
+
<head>
<link rel="stylesheet" href="https://2015.igem.org/Template:HKUST-Rice/Project_page.css?action=raw&ctype=text/css" type="text/css" />
+
<link rel="stylesheet" href="https://2015.igem.org/Template:HKUST-Rice/CSS?action=raw&ctype=text/css" type="text/css" />
 +
<style type= "text/css"> 
 +
img#Ricelogo{
 +
opacity: 0.3;
 +
 +
}
 +
div.project_row li {
 +
                        text.align:left;
 +
font-family: "Helvetica Neue", Helvetica, sans-serif;
 +
}
 +
div.project_content p.subTitle{
 +
color: #000000;
 +
font-weight: bold;
 +
font-size:2em;
 +
font-family: "Trebuchet MS", Helvetica, sans-serif;
 +
text-align:left;
 +
text-decoration:underline;
 +
}
 +
 +
div.project_content p.PICdescription{
 +
font-size:1.3em;
 +
padding-top:0px;
 +
padding-left:4em;
 +
padding-right:4em;
 +
}
 +
#Pgraph{
 +
width:60%;
 +
height:100%;
 +
}
 +
#Pgraph2{
 +
width:60%;
 +
height:100%;
 +
}
 +
#Pgraph3{
 +
width:90%;
 +
height:100%;
 +
}
 +
</style>
 +
</head>
 
 
<style type= "text/css"> 
 
 
                      div#MYicon1{
 
                                position:fixed;
 
                                width:100px;
 
                                height:auto;
 
                                left:4%;
 
                                top:40%;
 
                                  }
 
                      div#MYicon2{
 
                                position:fixed;
 
                                width:100px;
 
                                height:auto;
 
                                left:90%;
 
                                top:40%;
 
                                  }
 
                         
 
          </style>
 
</head>
 
 
<body>
 
<body>
 
<br>
 
<br>
 
<div class= "project_superrow">
 
<div class= "project_superrow">
<div id= "page_title"><h1>Nitrate sensor - <i>yeaRp </i></h1>
+
<div id= "page_title"><h1>Nitrate Sensor - <i>P<sub>yeaR</sub></i> </h1>
 
</div>
 
</div>
 
<div id="MYicon1">
 
<div id="MYicon1">
                       <a href="https://2015.igem.org/Team:HKUST-Rice/Nitrate_Sensor_PducS"><img src="https://static.igem.org/mediawiki/2015/e/ea/HKUST-Rice15_leftarrow.png"></a>
+
                       <a href="https://2015.igem.org/Team:HKUST-Rice/Nitrate_Sensor_PdcuS"><img src="https://static.igem.org/mediawiki/2015/e/ea/HKUST-Rice15_leftarrow.png">
 +
<p style="color:#5570b0; font-size: 130%"> Nitrate sensor (<i>P<sub>dcuS</sub></i>) </p></a>
 
</div>
 
</div>
 
                 <div id="MYicon2">
 
                 <div id="MYicon2">
                       <a href="https://2015.igem.org/Team:HKUST-Rice/Expression"><img src="https://static.igem.org/mediawiki/2015/7/7a/HKUST-Rice15_rightarrow.png"></a>
+
                       <a href="https://2015.igem.org/Team:HKUST-Rice/Expression"><img src="https://static.igem.org/mediawiki/2015/7/7a/HKUST-Rice15_rightarrow.png">
 +
<p style="color:#5570b0; font-size: 130%"> Parallel Sensors</p></a>
 
</div>
 
</div>
 
 
 
<div class="project_content">
 
<div class="project_content">
 +
<div class="project_row">
 +
<h1><i>E. coli</i> that glows in adequacy of NO<sub>3</sub><sup>-</sup> - at a glance</h1>
 +
 
 +
                                        <table>
 +
<tr>
 +
<td style="width:48.5%">
 +
<figure>
 +
<img  src="https://static.igem.org/mediawiki/2015/5/56/Team_HKUST-Rice_2015_pyeaRmech.PNG"style="width:100%;">
 +
</figure>
 +
</td>
 +
<td style="width:3%">
 +
</td>
 +
<td style="width:48.5%">
 +
<figure>
 +
<img src="https://static.igem.org/mediawiki/2015/6/60/Team_HKUST-Rice_2015_dumumpyear.PNG" style="width:100%">
 +
</figure>
 +
</td>
 +
</tr>
 +
<tr>
 +
<td style="width:48.5%">
 +
<p style="font-size:110%; padding-left:2%; padding-right: 2% ; height'90px';"><strong>A.</strong> <i>E. coli</i> engineered with <a href="http://parts.igem.org/Part:BBa_K381001"target="_blank">BBa_K381001</a> functions as a nitrate biosensor. High concentrations of NO<sub>3</sub><sup>-</sup> activates the promoter <i>P<sub>yeaR</sub></i> and increases the expression of GFP.</p>
 +
</td>
 +
<td style="width:3%">
 +
</td>
 +
<td style="width:48.5%">
 +
<p style="font-size:110%; padding-left:2;height:'90px'; padding-right: 2%"  ><strong>B.</strong> The nitrate sensing promoter <a href="http://parts.igem.org/Part:BBa_K381001"target="_blank">BBa_K381001</a> can detect a gradient of NO<sub>3</sub><sup>-</sup> concentrations</strong> and its activities were reported in Relative Fluorescence Units (RFU).</p>
 +
</td>
 +
</tr>
 +
</table>
 +
   
 +
                                        <p><ul style="text-align:left; font-size:1 em; line-height= 1 em; font-family: 'Helvetica Neue', Helvetica, sans-serif;"><li>Nitrate is an essential nutrient which plays multiple roles in plant growth and reproduction. </li>
 +
<li>This biosensor <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K381001">BBa_K381001</a> monitors NO<sub>3</sub><sup>-</sup> concentration.</li>
 +
<li>Activity of NO<sub>3</sub><sup>-</sup> sensing promoter (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K216005">BBa_K216005</a>) was re-characterized to further investigate on the behavior of it.</ul></p>
 +
</div>
 
<div class="project_row">
 
<div class="project_row">
<h1>Nitrate as a Macro-nutrient</h1>
+
                                        <hr class="para">
<p>Nitrate is an essential nutrient which plays multiple roles in plant growth and reproduction. For example, it provides nitrogen that plants need for producing amino acids and nucleic acids (DNA and RNA). Secondly, it is a component of chlorophyll and is therefore essential for photosynthesis. It is also the basic element of plant and animal proteins, and is important in periods of rapid plant growth. Lack of nitrogen will lead to stunted growth, yellowing of leaves, etc.  
+
<h1> An effort to make iGEM a better community</h1>
</p>
+
<p>Nitrate is an essential nutrient which plays multiple roles in plant growth and reproduction. For example, it provides nitrogen that plants need for producing amino acids and nucleic acids (DNA and RNA). Also, it is a component of chlorophyll and is therefore essential for photosynthesis.</p>
<!--<div class="project_image">
+
<p><i>P<sub>yeaR</sub></i> is first characterized and BioBricked by <a href="https://2009.igem.org/Team:Edinburgh">Edinburgh 2009</a> iGEM team and then further characterized by <a href="https://2010.igem.org/Team:BCCS-Bristol/Wetlab/Part_Design/BioBricks/PyeaR"target="_blank">BCCS-Bristol 2010</a> iGEM team. To provide more characterization data on such a devices, we further characterize this promoter. </p>
<img src="#" alt="image caption">
+
                               
</div>-->
+
                                <hr class="para">                   
 +
                                <p class="subTitle">Endogenous nitrate sensing system in <i>E. coli</i></p>
 +
<img style="width:70%;" src="https://static.igem.org/mediawiki/2015/5/56/Team_HKUST-Rice_2015_pyeaRmech.PNG" alt="image caption">
 +
<p style="font-size:110%; padding-left:6%;"><strong>Figure 1. The NO<sub>3</sub><sup>-</sup> uptake system in  <i>E. coli</i>.</strong></p>
 
 
</div>
+
 
<div class="project_row">
+
<p><i>Escherichia coli</i> (<i>E. coli</i>) detects environmental nitrate by the <i>yeaR-yoaG</i> operon. According to Figure 1, <i>P<sub>yeaR</sub></i>  (Lin, <i>et al.</i>, 2007) is regulated by the Nar two-component regulatory system (Nohno et al., 1989; Li et al., 1987) and NsrR regulatory protein (Partridge et al., 2009). When there is nitrate or nitrite, the repression from the Nar system on <i>P<sub>yeaR</sub></i> will be relieved due to the binding between the two. On the other hand, some nitrate will be converted into nitric oxide by nitrate reductase. Nitric oxide will bind to the NsrR protein and relieve the repression on <i>P<sub>yeaR</sub></i>. As a result, any genes that are downstream of <i>P<sub>yeaR</sub></i> will be expressed.</p>
<h1>Nitrate sensor Design</h1>
+
<p style = "font-size:110%">*The above text is our summarized understanding on NO<sub>3</sub><sup>-</sup>-sensing system. Please refer to our references section below for a full list of references cited.</p></div>
 +
<!--<div class="project_row">
 +
<br><br><br>
 +
                                        <hr class="para">
 +
<h1>Nitrate Sensor construct</h1>
 +
                         
 
<div class="project_image">
 
<div class="project_image">
<img src="https://static.igem.org/mediawiki/2015/7/7f/Team_HKUST_Rice_2015_PyeaR_mechanism.JPG" alt="image caption">
+
<img style="width:50%;"src="https://static.igem.org/mediawiki/2015/f/f3/Team_HKUST-Rice_2015_pyearconstruct.PNG" alt="image caption">
 
</div>
 
</div>
<p><i>yeaRp</i> (Lin, et al., 2007) is normally regulated by the Nar two-component regulatory system (T. Nohno, et al., 1989) and NsrR protein, a regulatory protein. When there is nitrate, some will relieve the repression from the Nar system and others will be converted into nitric oxide. The nitric oxide will bind to NsrR and relieve the repression on the <i>yeaRp</i> promoter. As a result, any genes that are downstream of the <i>yeaRp</i> promoter will be expressed. Therefore, with the GFP generator ligated, the reporter signal will increase with increasing nitrate concentrations.</p>
+
<div class="des">
+
<p style="font-size:110%"><strong>Figure 2. Construct for nitrate sensing. </strong> <i>P<sub>yeaR</sub></i> with GFP generator.</p></div>
+
<p>With the positive relationship between the promoter activity and nitrate concentration, by ligating the promoter together with the GFP generator (<a href="http://parts.igem.org/Part:BBa_K381001"target="_blank">pSB1C3-BBa_K381001</a>), an upward trend for the reporter signal with increasing nitrate concentrations was expected.</p>
</div>
+
</div>-->
<div class="project_row">
+
<!--<div class="project_row">
 
<hr class="para">
 
<hr class="para">
<h1>Experiment performed</h1>
+
<p>We performed two sets of characterization on pSB1C3-BBa_K381001 (BCCS-Britstol iGEM 2010), one using Luria Broth (LB) medium and the other in M9 minimal medium. Potassium nitrate (KNO<sub>3</sub>) was used as a source of nitrate in our experiments.<i> Escherichia coli</i> (<i>E. coli</i>) strain DH10B was used in the characterization of the promoter. Quantitative characterization on the promoter was done by measuring the fluorescence signal intensity using an EnVision multilabel reader.<br><br>All experiments were conducted three times and the final result was obtained by combining the 3 characterization trials.</P>
+
<h1>Experiment Performed</h1>
<h1 style="font-size: 180%"><b><u><font-size= "150%">pSB1C3-BBa_K381001 characterization</u></b><br><b></h1><p>Growth Medium: Luria Broth (LB)</font></b><br><br><b>Characterization of the promoter responsive range in Luria Broth (LB)</b><br>
+
<p>Two sets of characterization on pSB1C3-BBa_K381001 (<a href="https://2010.igem.org/Team:BCCS-Bristol/Wetlab/Part_Design/BioBricks/PyeaR"target="_blank">BCCS-Bristol iGEM 2010</a>) in two different growth media, Luria Broth (LB) medium and M9 minimal medium were performed. M9 minimal medium was used as it does not contain nitrate and has a lower auto-fluorescence level, thus providing more accurate results.
The concentrations used for the characterization of <i>yeaRp</i> was from 0 to 50 mM nitrate, with intervals of 10 mM.
+
Potassium nitrate (KNO<sub>3</sub>) was used as a source of nitrate in the experiments. <i>E. coli</i> strain DH10B was used in the characterization of the promoter. Quantitative characterization on the promoter was done by measuring the fluorescence signal intensity using an EnVision® multilabel reader. All experiments were conducted three times on different days and the final results were obtained by combining the 3 characterization results together.</p>
 
+
<p>Please visit <a href="https://static.igem.org/mediawiki/2015/b/b5/Team_HKUST-Rice_2015_2_pyearprotol.pdf"target="_blank"><i>P<sub>yeaR</sub></i> Experiment Protocol</a> for more details. </p>
                            <table border="1" style="width:100%; font-size: 150%">
+
                              <tr>
+
                                  <td><b>Final nitrate concentration (mM)</b></td>
+
                                  <td><b>LB (ml)</b></td>
+
                                  <td><b>1M KNO<sub>3</sub> (μl)</b></td>
+
                                  <td><b>Chloramphenicol (150ng/μl)<br>(μl)</b></td>
+
                              </tr>
+
                              <tr>
+
                                  <td>0</td>
+
                                  <td>10</td>
+
                                  <td>0</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>9.89</td>
+
                                  <td>10</td>
+
                                  <td>100</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>19.58</td>
+
                                  <td>10</td>
+
                                  <td>200</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>29.10</td>
+
                                  <td>10</td>
+
                                  <td>300</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>38.42</td>
+
                                  <td>10</td>
+
                                  <td>400</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>47.57</td>
+
                                  <td>10</td>
+
                                  <td>500</td>
+
                                  <td>10</td>
+
                              </tr>
+
                        </table>
+
                        <p>The test samples were first grown in Luria Broth (LB) overnight at 37<sup>o</sup>C. They were then washed 3 times using 0.85% NaCl. 100 μl of samples were then added to 900 μl of different concentrations of medium in a 96-well deep well plate and were further grown for 2.5 hours at 37<sup>o</sup>C until the bacteria reached mid-log phase. The fluorescence output was then measured using an EnVision multilabel reader.
+
<br><br></p>
+
<p><b>Characterization of the promoter dynamic range in Luria Broth (LB)</b>
+
<br>
+
The concentration of the characterization of <i>yeaRp</i> was from 0 to 10 mM of nitrate, with intervals of 2 mM.
+
</p>
+
                          <table border="1" style="width:100%; font-size: 150%">
+
                              <tr>
+
                                  <td><b>Final nitrate concentration (mM)</b></td>
+
                                  <td><b>LB (ml)</b></td>
+
                                  <td><b>1M KNO<sub>3</sub> (μl)</b></td>
+
                                  <td><b>Chloramphenicol (150ng/μl)<br>(μl)</b></td>
+
                              </tr>
+
                              <tr>
+
                                  <td>0</td>
+
                                  <td>10</td>
+
                                  <td>0</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>1.99</td>
+
                                  <td>10</td>
+
                                  <td>20</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>3.98</td>
+
                                  <td>10</td>
+
                                  <td>40</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>5.96</td>
+
                                  <td>10</td>
+
                                  <td>60</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>7.93</td>
+
                                  <td>10</td>
+
                                  <td>80</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>9.89</td>
+
                                  <td>10</td>
+
                                  <td>100</td>
+
                                  <td>10</td>
+
                              </tr>
+
                        </table>
+
 
+
<p>The test samples were first grown in Luria Broth (LB) overnight at 37<sup>o</sup>C. They were then washed 3 times using 0.85% NaCl. 100 μl of samples were then added to 900 μl of different concentrations of medium in a 96-well deep well plate and were further grown for 2.5 hours at 37<sup>o</sup>C until the bacteria reached mid-log phase. The fluorescence output was then measured using an EnVision multilabel reader.
+
</p>
+
 
+
<p><b>Growth Medium: M9</b>
+
<br><br><b>Characterization of the promoter responsive range in M9</b>
+
<br>The concentrations used for the characterization of <i>yeaRp</i> was from 0 to 2000 μM nitrate, with 10 folds increase for each interval.
+
</p>
+
                    <table border="1" style="width:100%; font-size: 150%">
+
                              <tr>
+
                                  <td><b>Final nitrate concentration (μM)</b></td>
+
                                  <td><b>LB (ml)</b></td>
+
                                  <td><b>1M KNO<sub>3</sub> added(μl)</b></td>
+
                                  <td><b>Chloramphenicol (150ng/μl) (μl)</b></td>
+
                              </tr>
+
                              <tr>
+
                                  <td>0</td>
+
                                  <td>10</td>
+
                                  <td>0</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>19.98</td>
+
                                  <td>10</td>
+
                                  <td>0.2</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>199.76</td>
+
                                  <td>10</td>
+
                                  <td>2</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>1994.02</td>
+
                                  <td>10</td>
+
                                  <td>20</td>
+
                                  <td>10</td>
+
                              </tr>
+
                            </table>
+
<p>The test samples were first grown in Luria Broth (LB) overnight at 37<sup>o</sup>C. They were then washed 3 times using 0.85% NaCl. 100 μl of samples were then added to 900 μl of different concentrations of medium in a 96-well deep well plate and were further grown for 4.5 hours at 37<sup>o</sup>C until the bacteria reach mid-log phase. The fluorescence output was then measured using an EnVision multilabel reader.
+
</p>
+
 
+
<p><b>Characterization of promoter dynamic range in M9</b>
+
<br>The concentrations of the characterization of <i>yeaRp</i> was from 0 to 500μM of nitrate, with intervals of 100 μM.
+
</p>
+
                            <table border="1" style="width:100%; font-size: 150%">
+
                              <tr>
+
                                  <td><b>Final nitrate concentration (μM)</b></td>
+
                                  <td><b>LB (ml)</b></td>
+
                                  <td><b>1M KNO<sub>3</sub> (μl)</b></td>
+
                                  <td><b>Chloramphenicol (150ng/μl) <br>(μl)</b></td>
+
                              </tr>
+
                              <tr>
+
                                  <td>0</td>
+
                                  <td>10</td>
+
                                  <td>0</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>99.89</td>
+
                                  <td>10</td>
+
                                  <td>1</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>199.76</td>
+
                                  <td>10</td>
+
                                  <td>2</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>299.61</td>
+
                                  <td>10</td>
+
                                  <td>3</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>399.44</td>
+
                                  <td>10</td>
+
                                  <td>4</td>
+
                                  <td>10</td>
+
                              </tr>
+
                              <tr>
+
                                  <td>499.25</td>
+
                                  <td>10</td>
+
                                  <td>5</td>
+
                                  <td>10</td>
+
                              </tr>
+
                            </table>
+
<p>The test samples were first grown in Luria Broth (LB) overnight at 37<sup>o</sup>C. They were then washed 3 times using 0.85% NaCl. 100 μl of samples were then added to 900 μl of different concentrations of medium in a 96-well deep well plate and werefurther grown for 4.5 hours at 37<sup>o</sup>C until the bacteria reached mid-log phase. The fluorescence output were then measured using an EnVision multilabel reader.
+
</p>
+
  
  
Line 254: Line 131:
 
</div>-->
 
</div>-->
 
 
</div>
+
</div>-->
 
<div class="project_row">
 
<div class="project_row">
 
<hr class="para">
 
<hr class="para">
 
<h1>Results</h1>
 
<h1>Results</h1>
<p>After obtaining the quantitative results on GFP signal intensity using an EnVision multilabel reader, we processed the data with relative fluorescence level (in OD<sub>600</sub>) against nitrate concentration.
+
<p>After obtaining the quantitative results of GFP signal intensity using an EnVision® multilabel reader, the fluorescence signal were represented in fluorescence divided by biomass.
<br><br>We expected that under low nitrate concentrations, the Relative Fluorescence Unit (RFU) will be low and this will increase according with increasing nitrate concentrations.
+
</p>
+
  
<p><b>Responsive range of promoter characterization in Luria Broth (LB)</b></P>
+
<p><b>Dynamic range Characterization of <i>P<sub>yeaR</sub></i> in LB and M9</b></P>
<div class="project_image">
+
<img src="https://static.igem.org/mediawiki/2015/a/ac/Team_HKUST-Rice_2015_LB_0-50_yeaRp_2.PNG" alt="image caption">
+
</div>
+
<p></p>
+
+
<p>
+
According to Figure 2, the relative fluorescence level increases 7.21 folds between 0 mM and 10 mM concentration of nitrate. Furthermore, a plateau was shown from the 10 mM nitrate concentration point. This result obtained is as expected according to previous experiments by the Edinburgh iGEM 2009 team and the BCCS-Bristol iGEM 2010 team, the dynamic range of <i>yeaRp</i> was from 0-10 mM nitrate concentration.
+
<br><br>After obtaining the results of <i>yeaRp</i> response behavior within 0-50 mM nitrate concentration, we can see that between 0-10 mM nitrate concentration, the fluorescence signal increases sharply. Therefore, another characterization was done focusing on the dynamic range of the promoter, 0-10 mM.
+
</p>
+
<p><b>Characterization of promoter dynamic range in Luria Broth (LB)</b></P>
+
                                        <div class="project_image">
+
<img src="https://static.igem.org/mediawiki/2015/7/71/Team_HKUST-Rice_2015-LB_0-10_yeaRp.PNG" alt="image caption">
+
</div>
+
<p>According to Figure 3, the relative fluorescence level increases 4.23 folds between 0 mM and 10 mM nitrate concentrations. Moreover, it shows an upward slope from 0 mM to 6 mM nitrate concentration. At concentration point of 8 mM nitrate, it shows a downward slope which then rises again at 10 mM nitrate. The result obtained is unexpected as according to previous experiments by the BCCS-Bristol iGEM 2010 team, a continuous upward slope was obtained from 0 mM to 9 mM nitrate concentration. The discrepancy in the obtained and reference results could be due to use of different bacterial strains, since the strain used by the BCCS-Bristol iGEM 2010 team was different from ours, causing the behavior of the promoter to be different.
+
  
<p><b>Characterization of promoter responsive range in M9</b></P>
+
<table>
                                        <div class="project_image">
+
<tr>
<img src="https://static.igem.org/mediawiki/2015/a/aa/Team_HKUST-Rice_2015_M9_0-2000_yeaRp_2.PNG" alt="image caption">
+
<td style="width:48.5%">
</div>
+
<figure>
 +
<img  src="https://static.igem.org/mediawiki/2015/c/c6/Team_HKUST-Rice_2015_LBlallal.PNG"style="width:100%;">
 +
</figure>
 +
</td>
 +
<td style="width:3%">
 +
</td>
 +
<td style="width:48.5%">
 +
<figure>
 +
<img src="https://static.igem.org/mediawiki/2015/a/a4/Team_HKUST-Rice_M9llallal.PNG" style="width:100%">
 +
</figure>
 +
</td>
 +
</tr>
 +
<tr>
 +
<td style="width:48.5%">
 +
<p style="font-size:110%; padding-left:2%; padding-right: 2% ; height'90px';"><strong>A.</strong> Characterization of <i>P<sub>yeaR</sub></i> in LB. </p>
 +
</td>
 +
<td style="width:3%">
 +
</td>
 +
<td style="width:48.5%">
 +
<p style="font-size:110%; padding-left:10%;height:'90px'; padding-right: 2%"  ><strong>B.</strong> Characterization of <i>P<sub>yeaR</sub></i> in M9 minimal medium. </p>
 +
</td>
 +
</tr>
 +
</table>
 +
<p style="font-size:110%">*GFP emission measurements were made using an EnVision® multilabel reader. This result was obtained by combining 3 charaterization data obtained in 3 different days. Error bars were presented in SEM.</p>
  
<p><According to Figure 4, the relative fluorescence level increases 4.37 folds from 0 μM and 2000 μM nitrate concentrations, and a plateau was shown from 500 μM nitrate concentration point.
+
<p>  
<br><br>After obtaining the results of <i>yeaRp</i> response behavior in the concentrations of 0-2000 μM nitrate, we find that the relative fluorescence level increases sharply between 0-500 μM concentrations of nitrate. As a result, another characterization was done focusing on the dynamic range of the promoter, 0-500 μM.</p>  
+
According to <strong>A</strong>,<!-- the result obtained was unexpected, according to previous experiments by the BCCS-Bristol iGEM 2010 team, a continuous upward slope was obtained from 0 mM to 9 mM nitrate concentration. The discrepancy between the obtained and reference results could be due to the use of different bacterial strains. The strain used by the BCCS-Bristol iGEM 2010 team was MG1655, while we were using DH10B.--> 
 +
a plateau was shown starting from the 10 mM concentration point, suggesting that 10 mM nitrate concentration is the saturation point of <i>P<sub>yeaR</sub></i> and the dynamic range of <i>P<sub>yeaR</sub></i> is shown to be between 0-10 mM in our study. The relative fluorescence level increases 7.21 folds between 0 mM and 10 mM concentrations of nitrate.</p>
  
 +
<p>According to <strong>B</strong>, 
 +
<!--After obtaining the results of <i>P<sub>yeaR</sub></i> response behavior in the concentrations of 0-500 μM nitrate, another characterization was was performed to further examine the behavior of <i>P<sub>yeaR</sub></i>. <br><br>According to Figure 3b,-->a plateau was shown starting from the 500 μM concentration point, suggesting that 500 μM nitrate concentration is the saturation point of <i>P<sub>yeaR</sub></i> and the dynamic range of <i>P<sub>yeaR</sub></i> is shown to be between 0-500 μM in our study. The relative fluorescence level increases 3.12 folds from 0 μM and 500 μM nitrate concentrations.</p>
 +
 +
 +
</div>
 
</div>
 
</div>
<div class="project_row">
+
<!--<div class="project_row">
 
<hr class="para">
 
<hr class="para">
 
<h1>Further Improvements</h1>
 
<h1>Further Improvements</h1>
<p>Since we were concerned that endogenous nitrate will affect the sensitivity of the promoter, we designed a method to reduce the endogenous noise.  
+
<p>Since endogenous nitrate would affect the sensitivity of the promoter, a method in reducing the endogenous noise was designed.  
+
<br><br>With <i>araBADp</i> as an inducible promoter, we aimed to find the concentration of arabinose that will most effectively reduce the most amount of endogenous noise, so that the promoter can be more sensitive.</p>
+
 
                                         <div class="project_image">
 
                                         <div class="project_image">
<img src="https://static.igem.org/mediawiki/2015/2/20/Team_HKUST-Rice_2015_Debug_mechanism_2.PNG" alt="image caption">
+
<img style="width:80%;"src="https://static.igem.org/mediawiki/2015/d/d8/Team_HKUST-Rice_2015_nitrate_debug.PNG" alt="image caption">
 +
</div>
 +
<div class="des">
 +
<p style="font-size:110%"><strong>Figure 5. Construct for endogenous noise reduction of <i>P<sub>yeaR</sub></i>.</strong></p></div>
 +
<p style="font-size:180%"><b>Rationale</b></p>
 +
<p id="Methods">As <i>P<sub>yeaR</sub></i> is regulated by the Nar system and NsrR protein, by overexpressing NsrR protein, endogenous nitrate alone is not likely to drive the transcription of <i>P<sub>yeaR</sub></i>. On the other hand, when there is nitrate in the environment, the amount of nitrate is enough to relieve the repression from the Nar system and NsrR protein, and transcription would result. With this method, less effects from the endogenous noise on the promoter is expected.
 +
 +
<br><br>With the inducible promoter <i>P<sub>araBAD</sub></i>, experiments were carried out to find the concentration of L-Arabinose which could reduce endogenous noise most effectively, so that the promoter could be more sensitive in detecting nitrate concentrations.</p>
 +
 
 +
<p style="font-size:180%"><b>Result</b></p>
 +
<div class="project_image">
 +
<img style="margin-left:-5%;width:90%;height:300px" src="https://static.igem.org/mediawiki/2015/c/cf/Team_HKUST-Rice_2015_debug1vv.PNG" alt="image caption">
 +
</div>
 +
<div class="project_image">
 +
<img style="margin-left:-5%;width:90%;height:300px" src="https://static.igem.org/mediawiki/2015/0/00/Team_HKUST-Rice_2015_debug2vv.PNG" alt="image caption">
 
</div>
 
</div>
<p>As <i>yeaRp</i> is regulated by Nar system and NsrR protein, by overexpressing of NsrR, the endogenous nitrate will titrate against the excess NsrR protein, so that less nitrate will drive the transcription of <i>yeaRp</i> promoter. When there is nitrate in the environment, the amount of nitrate is enough to relieve the repression from the Nar system and NsrR protein. By NsrR overexpression, we expected that the endogenous noise will be lowered, in which the relative fluorescence level at 0 mM nitrate concentration can be lowered to near 0. </p>
 
</div>
 
  
+
<div class="des">
+
<p style="font-size:110%"><strong>Figure 6. Endogenous noise reduction of <i>P<sub>yeaR</sub></i>.</strong> 0.01mM, 0.1mM, 1mM and 10mM of L-Arabinose was added for inducing <i>P<sub>araBAD</sub></i>. With different concentrations of NsrR protein produced, the endogenous noise was reduced accordingly.</p></div>
</div>
+
<p>According to Figure 6, with L-Arabinose added, the curve shifts downwards, suggesting the sensitivity of the promoter was being enhanced. However, as the result obtained is similar to that of <a href="https://2015.igem.org/Team:HKUST-Rice/Expression#co-expression">Parallel Sensors</a>, it is uncertain that the downward shifting was due to co-expression of promoters or the method for endogenous noise reduction. </p>
<hr class= "title">
+
</div>-->
</div>
+
                                <div class="project_row">
 +
                          <hr class="para">
 +
<h2>Materials and Methods</h2>
 +
<p>Please refer to <a href ="https://2015.igem.org/Team:HKUST-Rice/Protocol">our protocol page for the materials and methods used in characterization.</a></p>
 +
</div>
 +
                                <div class="project_row">
 +
<hr class="para">
 +
<h2>References</h2>
 +
                                <p style="font-size:125%">Li, S. F., & DeMoss, J. A. (1987). Promoter region of the nar operon of Escherichia coli: nucleotide sequence and transcription initiation signals.Journal of bacteriology, 169(10), 4614-4620.
 +
<br><br>Lin, H. Y., Bledsoe, P. J., & Stewart, V. (2007). Activation of yeaR-yoaG operon transcription by the nitrate-responsive regulator NarL is independent of oxygen-responsive regulator Fnr in Escherichia coli K-12. Journal of bacteriology, 189(21), 7539-7548.
 +
<br><br>Nohno, T., Noji, S., Taniguchi, S., & Saito, T. (1989). The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic acids research,17(8), 2947-2957.
 +
<br><br>Partridge, J. D., Bodenmiller, D. M., Humphrys, M. S., & Spiro, S. (2009). NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility.Molecular microbiology, 73(4), 680-694.</p></div>
 +
 
 +
                               
 +
 
 +
 
 +
 +
 +
 
</div>
 
</div>
 
 
Line 309: Line 227:
 
 
 
</html>
 
</html>
 +
{{HKUST-Rice Directory}}

Latest revision as of 02:23, 19 September 2015


Nitrate Sensor - PyeaR

E. coli that glows in adequacy of NO3- - at a glance

A. E. coli engineered with BBa_K381001 functions as a nitrate biosensor. High concentrations of NO3- activates the promoter PyeaR and increases the expression of GFP.

B. The nitrate sensing promoter BBa_K381001 can detect a gradient of NO3- concentrations and its activities were reported in Relative Fluorescence Units (RFU).

  • Nitrate is an essential nutrient which plays multiple roles in plant growth and reproduction.
  • This biosensor BBa_K381001 monitors NO3- concentration.
  • Activity of NO3- sensing promoter (BBa_K216005) was re-characterized to further investigate on the behavior of it.


An effort to make iGEM a better community

Nitrate is an essential nutrient which plays multiple roles in plant growth and reproduction. For example, it provides nitrogen that plants need for producing amino acids and nucleic acids (DNA and RNA). Also, it is a component of chlorophyll and is therefore essential for photosynthesis.

PyeaR is first characterized and BioBricked by Edinburgh 2009 iGEM team and then further characterized by BCCS-Bristol 2010 iGEM team. To provide more characterization data on such a devices, we further characterize this promoter.


Endogenous nitrate sensing system in E. coli

image caption

Figure 1. The NO3- uptake system in E. coli.

Escherichia coli (E. coli) detects environmental nitrate by the yeaR-yoaG operon. According to Figure 1, PyeaR (Lin, et al., 2007) is regulated by the Nar two-component regulatory system (Nohno et al., 1989; Li et al., 1987) and NsrR regulatory protein (Partridge et al., 2009). When there is nitrate or nitrite, the repression from the Nar system on PyeaR will be relieved due to the binding between the two. On the other hand, some nitrate will be converted into nitric oxide by nitrate reductase. Nitric oxide will bind to the NsrR protein and relieve the repression on PyeaR. As a result, any genes that are downstream of PyeaR will be expressed.

*The above text is our summarized understanding on NO3--sensing system. Please refer to our references section below for a full list of references cited.

-->

Results

After obtaining the quantitative results of GFP signal intensity using an EnVision® multilabel reader, the fluorescence signal were represented in fluorescence divided by biomass.

Dynamic range Characterization of PyeaR in LB and M9

A. Characterization of PyeaR in LB.

B. Characterization of PyeaR in M9 minimal medium.

*GFP emission measurements were made using an EnVision® multilabel reader. This result was obtained by combining 3 charaterization data obtained in 3 different days. Error bars were presented in SEM.

According to A, a plateau was shown starting from the 10 mM concentration point, suggesting that 10 mM nitrate concentration is the saturation point of PyeaR and the dynamic range of PyeaR is shown to be between 0-10 mM in our study. The relative fluorescence level increases 7.21 folds between 0 mM and 10 mM concentrations of nitrate.

According to B, a plateau was shown starting from the 500 μM concentration point, suggesting that 500 μM nitrate concentration is the saturation point of PyeaR and the dynamic range of PyeaR is shown to be between 0-500 μM in our study. The relative fluorescence level increases 3.12 folds from 0 μM and 500 μM nitrate concentrations.


References

Li, S. F., & DeMoss, J. A. (1987). Promoter region of the nar operon of Escherichia coli: nucleotide sequence and transcription initiation signals.Journal of bacteriology, 169(10), 4614-4620.

Lin, H. Y., Bledsoe, P. J., & Stewart, V. (2007). Activation of yeaR-yoaG operon transcription by the nitrate-responsive regulator NarL is independent of oxygen-responsive regulator Fnr in Escherichia coli K-12. Journal of bacteriology, 189(21), 7539-7548.

Nohno, T., Noji, S., Taniguchi, S., & Saito, T. (1989). The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic acids research,17(8), 2947-2957.

Partridge, J. D., Bodenmiller, D. M., Humphrys, M. S., & Spiro, S. (2009). NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility.Molecular microbiology, 73(4), 680-694.