Difference between revisions of "Team:HKUST-Rice/Nitrate Sensor PyeaR/dummy1"
Stephanieyiu (Talk | contribs) |
Stephanieyiu (Talk | contribs) |
||
Line 137: | Line 137: | ||
<p>After obtaining the quantitative results of GFP signal intensity using an EnVision® multilabel reader, the fluorescence signal were represented in fluorescence divided by biomass. | <p>After obtaining the quantitative results of GFP signal intensity using an EnVision® multilabel reader, the fluorescence signal were represented in fluorescence divided by biomass. | ||
− | <p><b>Dynamic range Characterization of <i>P<sub>yeaR</sub></i> in LB</b></P> | + | <p><b>Dynamic range Characterization of <i>P<sub>yeaR</sub></i> in LB and M9</b></P> |
− | + | ||
− | + | <table> | |
− | </ | + | <tr> |
− | < | + | <td style="width:48.5%"> |
+ | <figure> | ||
+ | <img src="https://static.igem.org/mediawiki/2015/c/c6/Team_HKUST-Rice_2015_LBlallal.PNG"style="width:100%;"> | ||
+ | </figure> | ||
+ | </td> | ||
+ | <td style="width:3%"> | ||
+ | </td> | ||
+ | <td style="width:48.5%"> | ||
+ | <figure> | ||
+ | <img src="https://static.igem.org/mediawiki/2015/a/a4/Team_HKUST-Rice_M9llallal.PNG" style="width:100%"> | ||
+ | </figure> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td style="width:48.5%"> | ||
+ | <p style="font-size:110%; padding-left:2%; padding-right: 2% ; height'90px';"><strong>A.</strong> Characterization of <i>P<sub>yeaR</sub></i> in LB. </p> | ||
+ | </td> | ||
+ | <td style="width:3%"> | ||
+ | </td> | ||
+ | <td style="width:48.5%"> | ||
+ | <p style="font-size:110%; padding-left:10%;height:'90px'; padding-right: 2%" ><strong>B.</strong> Characterization of <i>P<sub>yeaR</sub></i> in M9 minimal medium. </p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | <p style="font-size:110%">*GFP emission measurements were made using an EnVision® multilabel reader. This result was obtained by combining 3 charaterization data obtained in 3 different days. Error bars were presented in SEM.</p> | ||
+ | |||
+ | |||
− | |||
− | |||
<p> | <p> | ||
According to Figure 2a, the relative fluorescence level increases 7.21 folds between 0 mM and 10 mM concentrations of nitrate. A continuous upward slope was obtained from 0 mM to 6 mM nitrate concentration. This result obtained was unexpected, according to previous experiments by the BCCS-Bristol iGEM 2010 team, a continuous upward slope was obtained from 0 mM to 9 mM nitrate concentration. The discrepancy between the obtained and reference results could be due to the use of different bacterial strains. The strain used by the BCCS-Bristol iGEM 2010 team was MG1655, while we were using DH10B. | According to Figure 2a, the relative fluorescence level increases 7.21 folds between 0 mM and 10 mM concentrations of nitrate. A continuous upward slope was obtained from 0 mM to 6 mM nitrate concentration. This result obtained was unexpected, according to previous experiments by the BCCS-Bristol iGEM 2010 team, a continuous upward slope was obtained from 0 mM to 9 mM nitrate concentration. The discrepancy between the obtained and reference results could be due to the use of different bacterial strains. The strain used by the BCCS-Bristol iGEM 2010 team was MG1655, while we were using DH10B. | ||
<br><br>After obtaining the results of <i>P<sub>yeaR</sub></i> response behavior within 0-10 mM nitrate concentration, another characterization on 0-50 mM nitrate concentration was performed to further examine the behavior of <i>P<sub>yeaR</sub></i>. According to Figure 2b, a plateau was shown starting from the 10 mM concentration point, suggesting that 10 mM nitrate concentration is the saturation point of <i>P<sub>yeaR</sub></i> and the dynamic range of <i>P<sub>yeaR</sub></i> is shown to be between 0-10 mM in our study.</p> | <br><br>After obtaining the results of <i>P<sub>yeaR</sub></i> response behavior within 0-10 mM nitrate concentration, another characterization on 0-50 mM nitrate concentration was performed to further examine the behavior of <i>P<sub>yeaR</sub></i>. According to Figure 2b, a plateau was shown starting from the 10 mM concentration point, suggesting that 10 mM nitrate concentration is the saturation point of <i>P<sub>yeaR</sub></i> and the dynamic range of <i>P<sub>yeaR</sub></i> is shown to be between 0-10 mM in our study.</p> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<p>According to Figure 3a, the relative fluorescence level increases 3.12 folds from 0 μM and 500 μM nitrate concentrations. | <p>According to Figure 3a, the relative fluorescence level increases 3.12 folds from 0 μM and 500 μM nitrate concentrations. |
Revision as of 15:11, 18 September 2015
Nitrate Sensor - PyeaR
E. coli that glows in adequacy of NO3- - at a glance
A. E. coli engineered with BBa_K381001 functions as a nitrate biosensor. High concentrations of NO3- activates the promoter PyeaR and increases the expression of GFP. |
B. The nitrate sensing promoter BBa_K381001 can detect a gradient of NO3- concentrations and its activities were reported in Relative Fluorescence Units (RFU). |
- Nitrate is an essential nutrient which plays multiple roles in plant growth and reproduction.
- This biosensor BBa_K381001 monitors NO3- concentration.
- Activity of NO3- sensing promoter (BBa_K216005) was re-characterized to further investigate on the behavior of it.
An effort to make iGEM a better community
Nitrate is an essential nutrient which plays multiple roles in plant growth and reproduction. For example, it provides nitrogen that plants need for producing amino acids and nucleic acids (DNA and RNA). Also, it is a component of chlorophyll and is therefore essential for photosynthesis.
PyeaR is first characterized and BioBricked by Edinburgh 2009 iGEM team and then further characterized by BCCS-Bristol 2010 iGEM team . To provide more characterization data on such a devices, we further characterize this promoter.
Endogenous nitrate sensing system in E. coli
Figure 1. The NO3- uptake system in E. coli.
Escherichia coli (E. coli) detects environmental nitrate by the yeaR-yoaG operon. According to Figure 1, PyeaR (Lin, et al., 2007) is regulated by the Nar two-component regulatory system (Nohno et al., 1989; Li et al., 1987) and NsrR regulatory protein (Partridge et al., 2009). When there is nitrate or nitrite, the repression from the Nar system on PyeaR will be relieved due to the binding between the two. On the other hand, some nitrate will be converted into nitric oxide by nitrate reductase. Nitric oxide will bind to the NsrR protein and relieve the repression on PyeaR. As a result, any genes that are downstream of PyeaR will be expressed.
*The above text is our summarized understanding on NO3--sensing system. Please refer to our references section below for a full list of references cited.
Results
After obtaining the quantitative results of GFP signal intensity using an EnVision® multilabel reader, the fluorescence signal were represented in fluorescence divided by biomass.
Dynamic range Characterization of PyeaR in LB and M9
A. Characterization of PyeaR in LB. |
B. Characterization of PyeaR in M9 minimal medium. |
*GFP emission measurements were made using an EnVision® multilabel reader. This result was obtained by combining 3 charaterization data obtained in 3 different days. Error bars were presented in SEM.
According to Figure 2a, the relative fluorescence level increases 7.21 folds between 0 mM and 10 mM concentrations of nitrate. A continuous upward slope was obtained from 0 mM to 6 mM nitrate concentration. This result obtained was unexpected, according to previous experiments by the BCCS-Bristol iGEM 2010 team, a continuous upward slope was obtained from 0 mM to 9 mM nitrate concentration. The discrepancy between the obtained and reference results could be due to the use of different bacterial strains. The strain used by the BCCS-Bristol iGEM 2010 team was MG1655, while we were using DH10B.
After obtaining the results of PyeaR response behavior within 0-10 mM nitrate concentration, another characterization on 0-50 mM nitrate concentration was performed to further examine the behavior of PyeaR. According to Figure 2b, a plateau was shown starting from the 10 mM concentration point, suggesting that 10 mM nitrate concentration is the saturation point of PyeaR and the dynamic range of PyeaR is shown to be between 0-10 mM in our study.
According to Figure 3a, the relative fluorescence level increases 3.12 folds from 0 μM and 500 μM nitrate concentrations.
After obtaining the results of PyeaR response behavior in the concentrations of 0-500 μM nitrate, another characterization was was performed to further examine the behavior of PyeaR.
According to Figure 3b, a plateau was shown starting from the 500 μM concentration point, suggesting that 500 μM nitrate concentration is the saturation point of PyeaR and the dynamic range of PyeaR is shown to be between 0-500 μM in our study.
Materials and Methods
Please refer to our protocol page for the materials and methods used in characterization.
References
Li, S. F., & DeMoss, J. A. (1987). Promoter region of the nar operon of Escherichia coli: nucleotide sequence and transcription initiation signals.Journal of bacteriology, 169(10), 4614-4620.
Lin, H. Y., Bledsoe, P. J., & Stewart, V. (2007). Activation of yeaR-yoaG operon transcription by the nitrate-responsive regulator NarL is independent of oxygen-responsive regulator Fnr in Escherichia coli K-12. Journal of bacteriology, 189(21), 7539-7548.
Nohno, T., Noji, S., Taniguchi, S., & Saito, T. (1989). The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic acids research,17(8), 2947-2957.
Partridge, J. D., Bodenmiller, D. M., Humphrys, M. S., & Spiro, S. (2009). NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility.Molecular microbiology, 73(4), 680-694.