Difference between revisions of "Team:HKUST-Rice/Description"

Line 1: Line 1:
 
{{HKUST-Rice}}
 
{{HKUST-Rice}}
 +
 
<html>
 
<html>
 
<head>
 
<head>
                <style type="text/css">
+
<link rel="stylesheet" href="https://2015.igem.org/Template:HKUST-Rice/Project_page.css?action=raw&ctype=text/css" type="text/css" />
 
+
               
/*Set up height place holder for the banner*/
+
<style type="text/css">
#bannerContainer {
+
                                width: 100%;
+
                                height: 550px;
+
overflow:hidden;
+
margin: 0px;
+
float: left;
+
}
+
 
+
div.one {
+
padding: 20px;
+
border-bottom: 2px solid black;
+
width: 100%;
+
}
+
 
+
 
+
div.four {
+
margin-top: 10px;
+
padding: 20px;
+
width: 100%;
+
border-top: 2px solid black;
+
}
+
 
+
hr {
+
    border-style: solid;
+
    border-width: 1px;
+
    border-color: black;
+
    margin: 10px;
+
}
+
 
+
table.overview tr {
+
    border:solid 5px #ffffff;
+
    margin-left: 20px;
+
}
+
 
+
table.overview p {
+
line-height: 200%;
+
}
+
 
+
#contentContainer td {
+
    padding: 20px;
+
    border: 2px solid #565656;
+
    border-collapse: collapse;
+
    vertical-align: text-top;
+
}
+
  
 +
 
p.link { text-align: right; font-size: 130%; }
 
p.link { text-align: right; font-size: 130%; }
 
a.learn:link{ text-decoration: none;}
 
a.learn:link{ text-decoration: none;}
 
p.link:hover {font-size: 150%;}
 
p.link:hover {font-size: 150%;}
p {text-align: justify;}
 
  
 +
li.ref {text-align:left;
 +
    font-size: 120%;}
 +
 
</style>
 
</style>
  
 
</head>
 
</head>
 +
 +
<body>
 +
  
<body>
+
<div id="bannerContainer">
<!-- <div id="titleContainer">
+
                                       
<br>
+
<img src="https://static.igem.org/mediawiki/2015/3/34/Team-HKUST-Rice-Overview_ver2.JPG" style="width: 100%; height: 550px; position: left;">
                                <image src="https://static.igem.org/mediawiki/2015/d/d4/Logo.jpg" style="width: 100px; height: 100px; float: left;">
+
<p style="color: white; font-size:200%; margin-top: -105px;">Scroll down to learn more <br>
 
+
<img src="https://static.igem.org/mediawiki/2015/c/ce/HKUST-Rice15_bannerarrow.jpg" style="width: 4%; height: auto;"></p>
<p style="font-size:40px;color:#FFFFFF;line-height:1em;"> Potassium, Nitrate and Phosphate Biosensor </font><br>
+
                                <font size= "5"> HKUST-Rice iGEM Team </font></p>
+
             
+
+
</div> -->
+
 
+
<div id="bannerContainer">
+
                                        <image src="https://static.igem.org/mediawiki/2015/3/34/Team-HKUST-Rice-Overview_ver2.JPG" style="width: 100%; height: 550px; position: left;">
+
  
 
</div>
 
</div>
  
 
+
<div id="contentContainer">
+
<div class= "project_superrow">
 
+
<div id= "page_title"><h1>Project</h1>
<div class="one"><font size= "6" color=#000000>Overview</font><br><br>
+
<hr class= "title"></div>
<p style="line-height: 200%;" ><font size= "4" color=#000000> Nitrogen (N), Phosphorus (P), and potassium (K) are three macronutrients for plants, and deficiencies in any of these can lead to plant diseases. By creating a biological sensor that can quickly provide soil status to plant owners, we can prevent plant diseases due to the lack of nutrients. In view of this, our team is constructing a biological sensor in <i>E. coli</i>, which can detect NPK levels in the surrounding environment and give responses in the form of colors. In addition, we are characterizing the effects of a dual output system, in contrast to a single output system, in order to anticipate the expression of multiple outputs in a single system.</font><br></p></div><br>
+
 
+
 
+
<div class="project_content">
<table class="overview" style=" width: 103%;">
+
<div class="project_row">
<tr>
+
<h1>Overview</h1>
<td>
+
<p>Nitrogen (N), Phosphorus (P), and potassium (K) are three macronutrients for plants, and deficiencies in any of these can lead to plant diseases. By  
  <h1> Potassium Sensor </h1><br>
+
creating a biological sensor that can quickly provide soil status to plant owners, we can prevent plant diseases due to the lack of nutrients. In view of this,
  <p><font size= "3" color=#000000>KdpFABC transporter is a high affinity K+ uptake system (Siebers, A. & Altendorf, K., 1988). The promoter upstream of kdpFABC operon, kdpFp, works under low K+ concentration (Polarek, J. W., et al., 1992; Walderhaug, M. O., et al., 1992). The goal is to characterize kdpFp and build a device which is able to sense different concentration of K+ and express different level of GFP accordingly.</font><br>
+
our team is constructing a biological sensor in <i>E. coli</i>, which can detect NPK levels in the surrounding environment and give responses in the form of  
  <img src= "https://static.igem.org/mediawiki/2015/b/b4/Team-HKUST-Rice-KdpdF_promoter_1.JPG"></p>
+
colors. In addition, we are characterizing the effects of a dual output system, in contrast to a single output system, in order to anticipate the expression  
 +
of multiple outputs in a single system.</p>
 +
 +
</div>
 +
 +
 +
<div class="project_row">
 +
<hr class="para">
 +
 +
<table>
 +
<tr>
 +
<td style= "padding: 20px; vertical-align: text-top;">
 +
<h1 style="line-height: 110%;">Potassium Sensor</h1>
 +
<p>KdpFABC transporter is a high affinity K+ uptake system (Siebers, A. & Altendorf, K., 1988). The promoter upstream of kdpFABC operon,
 +
kdpFp, works under low K+ concentration (Polarek, J. W., et al., 1992; Walderhaug, M. O., et al., 1992). The goal is to characterize  
 +
kdpFp and build a device which is able to sense different concentration of K+ and express different level of GFP accordingly.<br><br>
 +
                    <img src= "https://static.igem.org/mediawiki/2015/b/b4/Team-HKUST-Rice-KdpdF_promoter_1.JPG" style="width: 300px; height: auto; float: center;"></p>
 
   <p class="link"><a class=" learn" href> Learn more ... </a></p>
 
   <p class="link"><a class=" learn" href> Learn more ... </a></p>
 
+
</td>
<br><hr><br>
+
  <h1> Phosphate Sensor </h1><br>
+
<td style= "padding: 20px; vertical-align: text-top;">
  <p><font size= "3" color=#000000><i>P<sub>phoA</sub></i> promoter (Hsieh, Y. J., & Wanner, B. L.,2010).is cross-regulated by <i>phoB</i> and <i>phoR</i>, and is usually repressed under high phosphate concentration. <i>phoR</i> behaves as an activator as well as an inactivator for <i>phoB</i>. When phosphate is limited, <i>phoR</i> will phosphorylate <i>phoB</i> and the phosphorylated <i>phoB</i> will directly activates the expression of <i>P<sub>phoA</sub></i> promoter. </font><br>
+
<h1 style="line-height: 110%;">Phosphate Sensor</h1>
   <img src= "https://static.igem.org/mediawiki/2015/7/7f/Team-HKUST-Rice-Pphoa_characterization.JPG"></p>
+
<p><i>P<sub>phoA</sub></i> promoter (Hsieh, Y. J., & Wanner, B. L.,2010).is cross-regulated by <i>phoB</i> and <i>phoR</i>, and is  
 +
usually repressed under high phosphate concentration. <i>phoR</i> behaves as an activator as well as an inactivator for <i>phoB</i>.
 +
When phosphate is limited, <i>phoR</i> will phosphorylate <i>phoB</i> and the phosphorylated <i>phoB</i> will directly activates the  
 +
expression of <i>P<sub>phoA</sub></i> promoter. <br>
 +
   <img src= "https://static.igem.org/mediawiki/2015/7/7f/Team-HKUST-Rice-Pphoa_characterization.JPG" style="width: 300px; height: auto; float: center;"></p>
 
   <p class="link"><a class=" learn" href> Learn more ... </a></p>
 
   <p class="link"><a class=" learn" href> Learn more ... </a></p>
</td>
+
    </td>
 
+
<td>
+
    <td style= "padding: 20px; vertical-align: text-top;">  
  <h1> Nitrate Sensor </h1><br>
+
<h1>Nitrate Sensor</h1>
  <p><font size= "3" color=#000000><i>P<sub>yeaR</sub></i> promoter (Lin, et al, 2007)is normally cross-regulated by the Nar two-component regulatory system (T.Nohno, et,al. , 1989) and <i>nsrR</i>, a regulatory protein. When there is nitrate and nitrite, it will be converted into nitric oxide. The nitric oxide will bind to <i>nsrR</i> and relieve the repression on the <i>P<sub>yeaR</sub></i> promoter. As a result, any genes that are downstream of the <i>P<sub>yeaR</sub></i> promoter will be expressed.</font><br>
+
<p><i>P<sub>yeaR</sub></i> promoter (Lin, et al, 2007)is normally cross-regulated by the Nar two-component regulatory system (T.Nohno,  
   <img src= "https://static.igem.org/mediawiki/2015/0/09/Team-HKUST-Rice-Pyear_characterization.JPG"></p>
+
et,al. , 1989) and <i>nsrR</i>, a regulatory protein. When there is nitrate and nitrite, it will be converted into nitric oxide.  
 +
The nitric oxide will bind to <i>nsrR</i> and relieve the repression on the <i>P<sub>yeaR</sub></i> promoter. As a result, any  
 +
genes that are downstream of the <i>P<sub>yeaR</sub></i> promoter will be expressed.</font><br>
 +
   <img src= "https://static.igem.org/mediawiki/2015/0/09/Team-HKUST-Rice-Pyear_characterization.JPG" style="width: 300px; height: auto; float: center;"></p>
 
   <p class="link"><a class=" learn" href> Learn more ... </a></p>
 
   <p class="link"><a class=" learn" href> Learn more ... </a></p>
 
+
</td>
<br><hr><br>
+
</tr>
  <h1> Integrated platform </h1><br>
+
</table>
  <p><font size= "3" color=#000000>In order to characterize the output difference between a single expression system and co-expression from a one vector, we will be constructing several inducible systems that give off fluorescence output and compare the dose response of the individual systems in the two scenarios.<br><br>As part of the expression platform, we also aim to construct a 3-input AND logic gate using toehold switches (Green, A. A., et al., 2014) to integrate the input signals detected from the three (N, P and K) promoters.</font><br>
+
</div>
   <img src= "https://static.igem.org/mediawiki/2015/0/08/Team-HKUST-Rice-3inputlogic_gate.JPG"></p>
+
 +
<div class="project_row">
 +
<hr class="para">
 +
<h1>Signal Co-expression</h1>
 +
<p>In order to characterize the output difference between a single expression system and co-expression  
 +
from a one vector, we will be constructing several inducible systems that give off fluorescence output and compare the dose  
 +
response of the individual systems in the two scenarios.<br><br>As part of the expression platform, we also aim to construct a  
 +
3-input AND logic gate using toehold switches (Green, A. A., et al., 2014) to integrate the input signals detected from the three  
 +
(N, P and K) promoters.</font><br>
 +
   <img src= "https://static.igem.org/mediawiki/2015/0/08/Team-HKUST-Rice-3inputlogic_gate.JPG" style="width: 400px; height: auto; float: center;"></p>
 
   <p class="link"><a class=" learn" href> Learn more ... </a></p>
 
   <p class="link"><a class=" learn" href> Learn more ... </a></p>
</td>
+
</tr>
+
</div>
</table>
+
 
+
 
+
<div class="project_row">
<div class="four">
+
                                        <hr class="para">
<br>
+
<h1>Reference:</h1>
<p><font size= "3" color=#000000>Reference:
+
<p>
<li>Nohno, T., Noji, S., Taniguchi, S., & Saito, T. (1989). The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic acids research,17(8), 2947-2957.</li><br>
+
<li class="ref">Nohno, T., Noji, S., Taniguchi, S., & Saito, T. (1989). The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic acids research,17(8), 2947-2957.</li><br>
 
   
 
   
<li>Lin, H. Y., Bledsoe, P. J., & Stewart, V. (2007). Activation of yeaR-yoaG operon transcription by the nitrate-responsive regulator NarL is independent of oxygen-responsive regulator Fnr in Escherichia coli K-12. Journal of bacteriology, 189(21), 7539-7548.</li><br>
+
<li class="ref">Lin, H. Y., Bledsoe, P. J., & Stewart, V. (2007). Activation of yeaR-yoaG operon transcription by the nitrate-responsive regulator NarL is independent of oxygen-responsive regulator Fnr in Escherichia coli K-12. Journal of bacteriology, 189(21), 7539-7548.</li><br>
  
<li>Hsieh, Y. J., & Wanner, B. L. (2010). Global regulation by the seven-component P i signaling system. Current opinion in microbiology, 13(2), 198-203.</li><br>
+
<li class="ref">Hsieh, Y. J., & Wanner, B. L. (2010). Global regulation by the seven-component P i signaling system. Current opinion in microbiology, 13(2), 198-203.</li><br>
  
<li>Siebers, A. and Altendorf, K. (1988). The K+-translocating Kdp-ATPase from Escherichia coli. European Journal of Biochemistry, 178, 131–140.</li><br>
+
<li class="ref">Siebers, A. and Altendorf, K. (1988). The K+-translocating Kdp-ATPase from Escherichia coli. European Journal of Biochemistry, 178, 131–140.</li><br>
  
<li>Walderhaug, M. O., Polarek, J. W., Voelkner, P., Daniel, J. M., Hesse, J. E., Altendorf, K., & Epstein, W. (1992). KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. Journal of Bacteriology, 174(7), 2152–2159.</li><br>
+
<li class="ref">Walderhaug, M. O., Polarek, J. W., Voelkner, P., Daniel, J. M., Hesse, J. E., Altendorf, K., & Epstein, W. (1992). KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. Journal of Bacteriology, 174(7), 2152–2159.</li><br>
 
   
 
   
<li>Green, A.A., Silver, P.A., Collins, J.J., & Yin, P. (2014). Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell, 157(4), 925-935.</li>
+
<li class="ref">Green, A.A., Silver, P.A., Collins, J.J., & Yin, P. (2014). Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell, 157(4), 925-935.</li>
 
+
</p>
 
+
</p></div>
+
</div>
 
+
 
+
 
+
</div>
 
+
</body>
</div>
+
</html>
 
+
 
+
 
+
</body>
+
</html>
+
 
+
  
  

Revision as of 15:53, 23 August 2015

Scroll down to learn more

Project


Overview

Nitrogen (N), Phosphorus (P), and potassium (K) are three macronutrients for plants, and deficiencies in any of these can lead to plant diseases. By creating a biological sensor that can quickly provide soil status to plant owners, we can prevent plant diseases due to the lack of nutrients. In view of this, our team is constructing a biological sensor in E. coli, which can detect NPK levels in the surrounding environment and give responses in the form of colors. In addition, we are characterizing the effects of a dual output system, in contrast to a single output system, in order to anticipate the expression of multiple outputs in a single system.


Potassium Sensor

KdpFABC transporter is a high affinity K+ uptake system (Siebers, A. & Altendorf, K., 1988). The promoter upstream of kdpFABC operon, kdpFp, works under low K+ concentration (Polarek, J. W., et al., 1992; Walderhaug, M. O., et al., 1992). The goal is to characterize kdpFp and build a device which is able to sense different concentration of K+ and express different level of GFP accordingly.

Phosphate Sensor

PphoA promoter (Hsieh, Y. J., & Wanner, B. L.,2010).is cross-regulated by phoB and phoR, and is usually repressed under high phosphate concentration. phoR behaves as an activator as well as an inactivator for phoB. When phosphate is limited, phoR will phosphorylate phoB and the phosphorylated phoB will directly activates the expression of PphoA promoter.

Nitrate Sensor

PyeaR promoter (Lin, et al, 2007)is normally cross-regulated by the Nar two-component regulatory system (T.Nohno, et,al. , 1989) and nsrR, a regulatory protein. When there is nitrate and nitrite, it will be converted into nitric oxide. The nitric oxide will bind to nsrR and relieve the repression on the PyeaR promoter. As a result, any genes that are downstream of the PyeaR promoter will be expressed.


Signal Co-expression

In order to characterize the output difference between a single expression system and co-expression from a one vector, we will be constructing several inducible systems that give off fluorescence output and compare the dose response of the individual systems in the two scenarios.

As part of the expression platform, we also aim to construct a 3-input AND logic gate using toehold switches (Green, A. A., et al., 2014) to integrate the input signals detected from the three (N, P and K) promoters.


Reference:

  • Nohno, T., Noji, S., Taniguchi, S., & Saito, T. (1989). The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic acids research,17(8), 2947-2957.

  • Lin, H. Y., Bledsoe, P. J., & Stewart, V. (2007). Activation of yeaR-yoaG operon transcription by the nitrate-responsive regulator NarL is independent of oxygen-responsive regulator Fnr in Escherichia coli K-12. Journal of bacteriology, 189(21), 7539-7548.

  • Hsieh, Y. J., & Wanner, B. L. (2010). Global regulation by the seven-component P i signaling system. Current opinion in microbiology, 13(2), 198-203.

  • Siebers, A. and Altendorf, K. (1988). The K+-translocating Kdp-ATPase from Escherichia coli. European Journal of Biochemistry, 178, 131–140.

  • Walderhaug, M. O., Polarek, J. W., Voelkner, P., Daniel, J. M., Hesse, J. E., Altendorf, K., & Epstein, W. (1992). KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. Journal of Bacteriology, 174(7), 2152–2159.

  • Green, A.A., Silver, P.A., Collins, J.J., & Yin, P. (2014). Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell, 157(4), 925-935.