Team:HKUST-Rice/Description
Overview
Nitrogen (N), Phosphorus (P), and potassium (K) are three macronutrients for plants, and deficiencies in any of these can lead to plant diseases. By creating a biological sensor that can quickly provide soil status to plant owners, we can prevent plant diseases due to the lack of nutrients. In view of this, our team is constructing a biological sensor in E. coli, which can detect NPK levels in the surrounding environment and give responses in the form of colors. In addition, we are characterizing the effects of a dual output system, in contrast to a single output system, in order to anticipate the expression of multiple outputs in a single system.
KdpFABC transporter is a high affinity K+ uptake system (Siebers, A. & Altendorf, K., 1988). The promoter upstream of kdpFABC operon, kdpFp, works under low K+ concentration (Polarek, J. W., et al., 1992; Walderhaug, M. O., et al., 1992). The goal is to characterize kdpFp and build a device which is able to sense different concentration of K+ and express different level of GFP accordingly. |
|
For nitrate sensing, we decided to use PyeaR promoter (Lin, et al, 2007). It is normally cross-regulated by the Nar two-component regulatory system (T.Nohno, et,al. , 1989) and nsrR, a regulatory protein that prevents the transcription of a number of operons in E. coli. When there is nitrate and nitrite in the environment, it will enter the cell and then being converted into nitric oxide. The nitric oxide will bind to nsrR and relieve the repression on the PyeaR promoter. As a result, any genes that are downstream of the PyeaR promoter will be expressed. As the biobrick of PyeaR promoter with a GFP coding device has already been submitted by the University of Bristol in 2010, we could characterize it and directly apply to our biosensor. |
In order to characterize the output difference between a single expression system and co-expression from a one vector, we will be constructing several inducible systems that give off fluorescence output and compare the dose response of the individual systems in the two scenarios. |
Reference: